• 제목/요약/키워드: Carbon Dioxide Equivalent Emission

검색결과 14건 처리시간 0.019초

우리나라 쇠고기 소비 행태 변화에 의한 이산화탄소 배출 변화량 예측 (Prediction of the Carbon Dioxide Emission Change Resulting from the Changes in Bovine Meat Consumption Behavior in Korea)

  • 여민주;김용표
    • 한국대기환경학회지
    • /
    • 제31권4호
    • /
    • pp.356-367
    • /
    • 2015
  • A consumption based study on the carbon dioxide ($CO_2$) emission change due to the changes in the bovine meat consumption behavior in Korea was carried out. It was found that if the consumption of bovine meat be reduced by half, the reduction amount of $CO_2$ emissions be over 0.8 $MtCO_2e$ in all senarios in 2023. This amount is equivalent to over 50% of the greenhouse gases (GHGs) emission reduction target in agriculture and forestry, and fishery, a significant reduction. It was also found that the $CO_2$ emission reduction amount in consumption-based approach was the largest when the consumption of the imported bovine meat be reduced, though the difference was not that large.

하수열원을 이용한 지역난방 적용성 검토 (A Study on the Application of District Heating System using Sewage Source)

  • 김상훈;김동진;최동규
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.928-933
    • /
    • 2009
  • The purpose of this study is to examine the energy consumption, carbon dioxide emission & energy cost of district heating using sewage source. The annual TOE of heat pump using sewage source save 37.1 percent than city gas boiler. And annual carbon dioxide emission of heat pump cut down 41.3 percent than city gas boiler. If it charges the rate schedule for district heating to apartment resident, collected amount are 3,127,170 thousand won. As energy cost of heat pump & circulation pump are 1,378,072 thousand won. the profits are 1,749,098 thousand won. As payback period is 8.97years, applicability is low level. However, it has advantages in energy consumption, carbon dioxide emission & energy cost. Therefore, it needs to proceed through government assistance.

  • PDF

가솔린 엔진(3.8L)에서 바이오에탄올 혼합연료의 성능 및 배출특성에 관한 연구 (A Study on Engine Performance and Exhaust Emission Characteristics of Gasoline Engine using Bio-ethanol Blended Fuel)

  • 이치우
    • 한국기계가공학회지
    • /
    • 제11권4호
    • /
    • pp.131-137
    • /
    • 2012
  • This article is about using the fuel mixed with 10% and 20% bio-ethanol to gasoline for the engine as a way to reduce carbon emission before commercializing future automobiles like fuel cell cars. The fuel mixed with 10% and 20% bio-ethanol showed output equivalent to that of the previous gasoline fuel. CO and $CO_2$ emission was somewhat reduced, but the difference was not significant. And the consumption of the fuel increased slightly. However, bio-ethanol is produced from bio mass growing with the absorption of carbon dioxide, so the total amount of carbon dioxide did not increase according to the result. In NOx, as the use of ethanol increases, the effect of reduction gets greater, and the emission of oxygen showed almost no change compared with gasoline.

A Case Study to Estimate the Greenhouse-Gas Mitigation Potential on Rice Production System in Farming without Agricultural Chemicals

  • Lee, Jong-Sik;Ryu, Jong-Hee;Jeong, Hyun-Cheol;Choi, Eun-Jung;Kim, Gun-Yeob
    • 한국토양비료학회지
    • /
    • 제47권5호
    • /
    • pp.374-380
    • /
    • 2014
  • To estimate greenhouse gas (GHG) emission, the inventory of rice cultivation at the farming without agricultural chemicals was established from farmers in Gunsan, Jeonbuk province in 2011~2012. The objectives of this study were to calculate carbon footprint and analyse the major factor of GHGs. To do this, we carried out a sensitivity analysis using the analyzed main factors of GHGs and estimated the mitigation potential of GHGs. Also we suggested agricultural methods to reduce GHGs that can be appled by farmers at this region. At the farming system without agricultural chemicals, carbon footprint of rice production unit of 1 kg was 2.15 kg $CO_2.-eq.kg^{-1}$. Although the amount of carbon dioxide ($CO_2$) emission was the largest among GHGs, methane ($CH_4$) emission had the highest contribution to carbon footprint on rice production system when it was converted to carbon dioxide equivalent ($CO_2-eq.$) multiplied by the global warming potential (GWP). Main source of $CO_2$ emission in the rice farming system without agricultural chemicals was combustion of fossil fuels used by agricultural machinery. Most of the $CH_4$ was emitted during rice cultivation practice and its major emission factor was flooded paddy field in anaerobic condition. Also, most of the $N_2O$ was emitted from rice cultivation process. Major sources of the $N_2O$ emission was application of fertilizer such as compound fertilizer. As a result of sensitivity analysis in energy consumption, diesel had the highest sensitivity among the energy inputs. With the reduction of diesel consumption by 10%, it was estimated that $CO_2$ potential reduction was about 2.0%. With reducing application rate of compound fertilizer by 10%, the potential reduction was calculated that $CO_2$ and $N_2O$ could be reduced by 0.5% and 0.9%, respectively. At the condition of 10% reduction of silicate and compost, $CO_2$ and $CH_4$ could be reduced by 1.5% and 1.6%, respectively. With 8 days more drainage than the ordinary practice, $CH_4$ emission could be reduced by about 4.5%. Drainage and diesel consumption were the main sources having the largest effect on the GHG reduction at the farming system without agricultural chemicals. Based on the above results, we suggest that no-tillage and midsummer drainage could be a method to decrease GHG emissions from rice production system.

Greenhouse gases emission from aerobic methanotrophic denitrification (AeOM-D) in sequencing batch reactor

  • Lee, Kwanhyoung;Choi, Oh Kyung;Lee, Jae Woo
    • Membrane and Water Treatment
    • /
    • 제8권2호
    • /
    • pp.171-184
    • /
    • 2017
  • This study presents the effect of hydraulic retention time (HRT) on the characteristics of emission of three major greenhouse gases (GHGs) including $CH_4$, $CO_2$ and $N_2O$ during operation of a sequencing batch reactor for aerobic oxidation of methane with denitrification (AeOM-D SBR). Dissolved $N_2O$ concentration increased, leveled-off and slightly decreased as the HRT increased from 0.25 to 1d. Concentration of the dissolved $N_2O$ was higher at the shorter HRT, which was highly associated with the lowered C/N ratio. A longer HRT resulted in a higher C/N ratio with a sufficient carbon source produced by methanotrophs via methane oxidation, which provided a favorable condition for reducing $N_2O$ formation. With a less formation of the dissolved $N_2O$, $N_2O$ emission rate was lower at a longer HRT condition due to the lower C/N ratio. Opposite to the $N_2O$ emission, emission rates of $CH_4$ and $CO_2$ were higher at a longer HRT. Longer HRT resulted in the greater total GHGs emission as $CO_2$ equivalent which was doubled when the HRT increased from 0.5d to 1.0 d. Contribution of $CH_4$ onto the total GHGs emission was most dominant accounting for 98 - 99% compared to that of $N_2O$ (< 2%).

Analysis of research trends in methane emissions from rice paddies in Korea

  • Choi, Eun-Jung;Lee, Jae-Han;Jeong, Hyun-Cheol;Kim, Su-Hun;Lim, Ji-Sun;Lee, Dong-Kyu;Oh, Taek-Keun
    • 농업과학연구
    • /
    • 제44권4호
    • /
    • pp.463-476
    • /
    • 2017
  • Climate change is considered as the greatest threat to our future and descendants. The Korean government has set a target for 2030 to reduce emission of greenhouse gases (GHGs) by 37% from the business-as-usual levels which are projected to reach 851 million metric tons of $CO_2eq$ (Carbon dioxide equivalent). In Korea, GHGs emission from agriculture account for almost 3.1% of the total of anthropogenic GHGs. The GHGs emitted from agricultural land are largely classified into three types: carbon dioxide ($CO_2$), methane ($CH_4$), and nitrous oxide ($N_2O$). In Korea, rice paddies are one of the largest agricultural $CH_4$ sources. In order to analyze domestic research trends related to $CH_4$ emission from rice paddies, 93 academic publications including peer reviewed journals, books, working papers, reports, etc., published from 1995 to September 2017, were critically reviewed. The results were classified according to the research purposes. $CH_4$ characteristics and assessment were found to account for approximately 65.9% of the research trends, development of $CH_4$ emission factors for 9.5%, $CH_4$ emission reduction technology for 14.8%, and $CH_4$ emission modeling for 6.3%, etc. A number of research related to $CH_4$ emission characteristics and assessment have been studied in recent years, whereas further study on $CH_4$ emission factors are required to determine an accurate country-specific GHG emission from rice paddies. Future research should be directed toward both studies for reducing the release of $CH_4$ from rice paddies to the atmosphere and the understanding of the major controlling factors affecting $CH_4$ emission.

Paper Recycling of South Korea and its Effects on Greenhouse Gas Emission Reduction and Forest Conservation

  • Cha, Junhee;YOUN, Yeo-Chang
    • 한국산림과학회지
    • /
    • 제97권5호
    • /
    • pp.530-539
    • /
    • 2008
  • The study evaluates the greenhouse gas (GHG) reduction potential of paper recycling by paper industry in South Korea and determines the positive impact on global warming by conserving the world's forests through decreasing pulp wood use. South Korea is one of the leading countries in the world thai recycle papers with a collection rate of 71.8 percent and a recycling rate of 74.4 percent in 2005. Greenhouse gas emission reduction potential in terms of carbon dioxide ($CO_2$) equivalent from paper recycling was assessed scientifically by the use of Life Cycle Assessment (LCA). Three types of papers including newsprint, container-board, and white-board were used for assessment in this study. Results of this study indicate that $CO_2$ emission reduction potential of recycling paper varies according to its types and recycling rates. Greenhouse gas emission reduction factor of 0.74869 $tCO_2$ per ton of recycled paper was derived from this study. In applying this factor. it was found out that the South Korean paper industry reduced GHG emission of around 6,364,550 $tCO_2$ by recycling paper in 2005. With this. the country's paper industry could claim that by recycling in thai particular year. approximately $23.8million\;m^3$ of woods were not harvested and thus 212,500 ha of world's forests were estimated to be saved in that particular year. Overall. it could be concluded that the Korean paper industry was able to reduce $CO_2$ emission and was able to conserve world's forests by its high rates of paper recycling.

Methane and Nitrous Oxide Emissions from Livestock Agriculture in 16 Local Administrative Districts of Korea

  • Ji, Eun-Sook;Park, Kyu-Hyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권12호
    • /
    • pp.1768-1774
    • /
    • 2012
  • This study was conducted to evaluate methane ($CH_4$) and nitrous oxide ($N_2O$) emissions from livestock agriculture in 16 local administrative districts of Korea from 1990 to 2030. National Inventory Report used 3 yr averaged livestock population but this study used 1 yr livestock population to find yearly emission fluctuations. Extrapolation of the livestock population from 1990 to 2009 was used to forecast future livestock population from 2010 to 2030. Past (yr 1990 to 2009) and forecasted (yr 2010 to 2030) averaged enteric $CH_4$ emissions and $CH_4$ and $N_2O$ emissions from manure treatment were estimated. In the section of enteric fermentation, forecasted average $CH_4$ emissions from 16 local administrative districts were estimated to increase by 4%-114% compared to that of the past except for Daejeon (-63%), Seoul (-36%) and Gyeonggi (-7%). As for manure treatment, forecasted average $CH_4$ emissions from the 16 local administrative districts were estimated to increase by 3%-124% compared to past average except for Daejeon (-77%), Busan (-60%), Gwangju (-48%) and Seoul (-8%). For manure treatment, forecasted average $N_2O$ emissions from the 16 local administrative districts were estimated to increase by 10%-153% compared to past average $CH_4$ emissions except for Daejeon (-60%), Seoul (-4.0%), and Gwangju (-0.2%). With the carbon dioxide equivalent emissions ($CO_2$-Eq), forecasted average $CO_2$-Eq from the 16 local administrative districts were estimated to increase by 31%-120% compared to past average $CH_4$ emissions except Daejeon (-65%), Seoul (-24%), Busan (-18%), Gwangju (-8%) and Gyeonggi (-1%). The decreased $CO_2$-Eq from 5 local administrative districts was only 34 kt, which was insignificantly small compared to increase of 2,809 kt from other 11 local administrative districts. Annual growth rates of enteric $CH_4$ emissions, $CH_4$ and $N_2O$ emissions from manure management in Korea from 1990 to 2009 were 1.7%, 2.6%, and 3.2%, respectively. The annual growth rate of total $CO_2$-Eq was 2.2%. Efforts by the local administrative offices to improve the accuracy of activity data are essential to improve GHG inventories. Direct measurements of GHG emissions from enteric fermentation and manure treatment systems will further enhance the accuracy of the GHG data.

변형된 삼원촉매에 의한 저온시동조건에서의 메탄올엔진 배가스 정화효과에 관한 연구 (Studies on the Emission control of methanol engine exhaust with modified 3-way catalyst at cold start condition)

  • 홍종성;정석진
    • 한국대기환경학회지
    • /
    • 제9권2호
    • /
    • pp.160-167
    • /
    • 1993
  • As the major methanol fueled vehicle exhaust components, formaldehyde & methanol conversion over the existing commercial 3-way catalyst was examined in a labolatory tains different Ag loadings on commercial 3-way catalyst, and german commercial catalysts for methanol engine exhaust manufactured by a commercial manufacturer. Silver catalysts were prepared by the wet impregnation of silver nitrate solution on commercial 3-way catalyst. These catalysts were characterized with BET Surface area and pore size distribution. In general, the formaldehyde(HCHO) conversion of the tested catalysts was similar to that of methanol$(CH_3OH)$. At 100$^\circ$C, which is equivalent to the cold start condition, 5wt% Ag cat. showed the most excellent HCHO and $CH_3OH$ conversion. The order of activity for conversion of HCHO & $CH_3OH$ to carbon dioxide and water vapor was as follows ; 5wt% Ag/3-way cat.>2wt% Ag/3-way cat.>german cat. front(1) > german cat. rear(2) > 10wt% Ag/3-way cat.> commercial 3-wat catalyst. However there was no significant activity difference between those tested catalysts in the hot run condition of 400$^\circ$C. Therefore, it could be concluded that the Ag-modified 3-way catalyst was the most effective and practical catalyst system which could be capable of removal the HCHO and methanol at the special condition of low temperature such as cold start condition.

  • PDF

고로슬래그 미분말과 순환잔골재를 사용하는 친환경 모르타르에 탈황석고 및 시멘트에 의한 품질향상 (Improving Quality of Eco-Mortar Incorporating Blast Furnace Slag and Recycled Aggregate Depending on Replacement Gypsum and Cement)

  • 백병훈;한천구
    • 한국건축시공학회지
    • /
    • 제15권2호
    • /
    • pp.193-199
    • /
    • 2015
  • 최근, 콘크리트 산업에서는 $CO_2$ 배출량감소등 환경문제와 함께 부존자원의 고갈대책도 중요한 문제점으로 제기되어, 이를 동시에 해결하기 위하여 각종 산업부산물이나 산업폐기물을 콘크리트용 자원으로 재이용하는 방법이 연구되고 있다. 본 연구는 고로슬래그 미분말(BS)과 순환잔골재(RFA) 혼합 모르타르를 기반으로 하여 BS의 잠재수경성 반응을 탈황석고(FGD)와 보통포틀랜드 시멘트(OPC)의 자극반응으로 추가 활성화시킴으로써 일반 강도영역까지의 모르타르 활용성을 검토하고자 하였다. 결과적으로, BS에 FGD 10%, OPC 30%를 치환하고 RFA를 사용할 경우 OPC만을 사용하는 플레인 모르타르의 80%정도인 보통강도모르타르가 발휘되었지만 실용적인 측면에서 유동성적으로 플로치를 동일하게 유지하는 물-결합재를 낮춰 주게 된다면 더욱 플레인 강도영역에 근접할 수 있을 것으로 사료된다.