• 제목/요약/키워드: Carbon Conversion

검색결과 708건 처리시간 0.025초

Landuse and Landcover Change and the Impacts on Soil Carbon Storage on the Bagmati Basin of Nepal

  • Bastola, Shiksha;Lim, Kyuong Jae;Yang, Jae Eui;Shin, Yongchul;Jung, Younghun
    • 한국지반환경공학회 논문집
    • /
    • 제20권12호
    • /
    • pp.33-39
    • /
    • 2019
  • The upsurge of population, internal migration, economic activities and developmental works has brought significant land use and land cover (LULC) change over the period of 1990 and 2010 in the Bagmati basin of Nepal. Along with alteration on various other ecosystem services like water yield, water quality, soil loss etc. carbon sequestration is also altered. This study thus primary deals with evaluation of LULC change and its impact on the soil carbon storage for the period 1990 to 2010. For the evaluation, InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) Carbon model is used. Residential and several other infrastructural development activities were prevalent on the study period and as a result in 2010 major soil carbon reserve like forest area is decreased by 7.17% of its original coverage in 1990. This decrement has brought about a subsequent decrement of 1.39 million tons of carbon in the basin. Conversion from barren land, water bodies and built up areas to higher carbon reserve like forest and agriculture land has slightly increased soil carbon storage but still, net reduction is higher. Thus, the spatial output of the model in the form of maps is expected to help in decision making for future land use planning and for restoration policies.

귀금속촉매 (Pt, Pd)를 이용한 일산화탄소 산화반응에 관한 연구 (A Study of Carbon Monoxide Oxidation on Pt & Pt-Pd Catalysts)

  • ;이원묵;유홍진
    • 한국대기환경학회지
    • /
    • 제1권1호
    • /
    • pp.43-51
    • /
    • 1985
  • This study is concerned with the oxidation of carbon monoxide on platinum and platinum-palladium catalysts. Catalysts were made by the impregnation method and flow reactor was used in the catalytic reaction. As for the mixed gases, carbon monoxide concentration varied from 1 to 4% and that of oxygen from 1 to 4%. $N_2$ was used as carrier gas and GHSV varied from 24, 000 $h^{-1} to 60, h^{-1}$. The temperature range was from 200 to $600^\circ$C. It was also taken into consideration that the heat and mass transfer resistance of our catalysts was negligible in the study. Experimental results showed that platinum-palladium catalyst was about 1.5-3.9% superior to platinum catalyst in conversion yield. When we used platinum-palladium catalyst, we observed that carbon monoxide oxidation was found to be 1 st order with respect to carbon monoxide concentration. Activation energy of the catalyst was 23.5 kcal/mol.

  • PDF

Silicon Carbide Coating on Graphite and Isotropic C/C Composite by Chemical Vapour Reaction

  • Manocha, L.M.;Patel, Bharat;Manocha, S.
    • Carbon letters
    • /
    • 제8권2호
    • /
    • pp.91-94
    • /
    • 2007
  • The application of Carbon and graphite based materials in unprotected environment is limited to a temperature of $450^{\circ}C$ or so because of their susceptibility to oxidation at this temperature and higher. To over come these obstacles a low cost chemical vapour reaction process (CVR) was developed to give crystalline and high purity SiC coating on graphite and isotropic C/C composite. CVR is most effective carbothermal reduction method for conversation of a few micron of carbon layer to SiC. In the CVR method, a sic conversation layer is formed by reaction between carbon and gaseous reagent silicon monoxide at high temperature. Characterization of SiC coating was carried out using SEM. The other properties studied were hardness density and conversion efficiency.

고에너지 밀도 바나듐 레독스 흐름 전지를 위한 망간산화물 촉매와 다공성 탄소 기재의 시너지 효과 (Synergistic Effect of the MnO Catalyst and Porous Carbon Matrix for High Energy Density Vanadium Redox Flow Battery)

  • 김민성;고민성
    • 한국표면공학회지
    • /
    • 제52권3호
    • /
    • pp.150-155
    • /
    • 2019
  • The carbon electrode was modified through manganese-catalyzed hydrogenation method for high energy density vanadium redox flow battery (VRFB). During the catalytic hydrogenation, the manganese oxide deposited at the surface of the carbon electrode stimulated the conversion reaction from carbon to methane gas. This reaction causes the penetration of the manganese and excavates a number of cavities at electrode surface, which increases the electrochemical activity by inducing additional electrochemically active site. The formation of the porous surface was confirmed by the scanning electron microscopy (SEM) images. Finally, the electrochemical performance test of the electrode with the porous surface showed lower polarization and high reversibility in the cathodic reaction compared to the conventional electrode.

Effect of Graphitic Nanofibers on Interfacial Adhesion and Fracture Toughness of Carbon Fibers-reinforced Epoxy Composites

  • Kim, Seong-Hwang;Park, Soo-Jin
    • Composites Research
    • /
    • 제34권2호
    • /
    • pp.82-87
    • /
    • 2021
  • The mechanical properties of carbon fiber-reinforced epoxy composites (CFRPs) are greatly dependent on the interfacial adhesion between the carbon fibers and the epoxy matrix. Introducing nanomaterial reinforcements into the interface is an effective approach to enhance the interfacial adhesion of CFRPs. The main purpose of this work was to introduce graphitic nanofiber (GNFs) between an epoxy matrix and carbon fibers to enhance interfacial properties. The composites were reinforced with various concentrations of GNFs. For all of the fabricated composites, the optimum GNF content was found to be 0.6 wt%, which enhanced the interlaminar shear strength (ILSS) and fracture toughness (KIC) by 101.9% and 33.2%, respectively, compared with those of neat composites. In particular, we observed a direct linear relationship between ILSS and KIC through surface free energy. The related reinforcing mechanisms were also analyzed and the enhancements in mechanical properties are mainly attributed to the interfacial interlocking effect. Such an effort could accelerate the conversion of composites into high performance materials and provide fundamental understanding toward realizing the theoretical limits of interfacial adhesion and mechanical properties.

탈황석고와 탄산화물을 혼합재로 사용한 모르타르의 특성 분석 (Characteristic analysis of mortar using desulfurization gypsum and carbon dioxide conversion capture materials as a cement admixture)

  • 유혜진;서성관;추용식;박금단
    • 한국결정성장학회지
    • /
    • 제34권3호
    • /
    • pp.86-91
    • /
    • 2024
  • 본 연구에서는 국내 정유사에서 발생하는 탈황석고(DG)와 이산화탄소를 반응시켜 제조한 이산화탄소전환탄산화물(CCMs)을 시멘트 혼합재로 적용한 모르타르의 특성 분석을 실시하였다. 화학성분, 입도 분석 결과를 통해 탈황석고와 이산화탄소가 반응하여 CaCO3 등의 탄산화물 결정이 생성된 것을 추정할 수 있었으며, 이를 시멘트 혼합재로 활용하여 작업성, 압축강도 등의 물성과 동결융해 후 압축강도 및 촉진탄산화 깊이 측정을 실시하여 내구성 분석을 실시하였다. 실험 결과, 혼합재의 함량이 증가할수록 작업성 및 압축강도 특성이 낮아지는 것을 확인할 수 있었으며, 동결융해 후 압축강도, 촉진 탄산화 깊이 또한 물성 측정 결과와 유사한 경향을 나타내었다. 아울러 탈황석고 대비 탄산화물을 혼합할 경우 물성 및 내구성이 양호하게 나타나는 것을 확인할 수 있었으며, 이는 미반응 CaO 및 CaCO3 등 혼합재의 결정상 차이에 따른 것으로 판단되었다.

염료감응형 태양전지의 저비용 상대전극을 위한 N-doped ZnO 나노입자-탄소나노섬유 복합체 (N-Doped ZnO Nanoparticle-Carbon Nanofiber Composites for Use as Low-Cost Counter Electrode in Dye-Sensitized Solar Cells)

  • 안하림;안효진
    • 한국재료학회지
    • /
    • 제24권10호
    • /
    • pp.565-571
    • /
    • 2014
  • Nitrogen-doped ZnO nanoparticle-carbon nanofiber composites were prepared using electrospinning. As the relative amounts of N-doped ZnO nanoparticles in the composites were controlled to levels of 3.4, 9.6, and 13.8 wt%, the morphological, structural, and chemical properties of the composites were characterized by means of field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In particular, the carbon nanofiber composites containing 13.8 wt% N-doped ZnO nanoparticles exhibited superior catalytic properties, making them suitable for use as counter electrodes in dye-sensitized solar cells (DSSCs). This result can be attributed to the enhanced surface roughness of the composites, which offers sites for $I_3{^-}$ ion reductions and the formation of Zn3N2 phases that facilitate electron transfer. Therefore, DSSCs fabricated with 13.8 wt% N-doped ZnO nanoparticle-carbon nanofiber composites showed high current density ($16.3mA/cm^2$), high fill factor (57.8%), and excellent power-conversion efficiency (6.69%); at the same time, these DSSCs displayed power-conversion efficiency almost identical to that of DSSCs fabricated with a pure Pt counter electrode (6.57%).

나노구조를 갖는 중공구형 및 중공반구형 다공성 탄소 담체가 페놀 수산화 반응에 미치는 영향 및 용매 의존도 (Support Effect of Nano Structured Carbon Nano Sphere and Nano Bowl of Carbon in the Phenol Hydroxylation and its Solvent Dependence)

  • 권송이;윤성훈;김희영;이재욱;이철위
    • Korean Chemical Engineering Research
    • /
    • 제48권4호
    • /
    • pp.423-427
    • /
    • 2010
  • 나노구조를 갖는 중공구형(CNS) 및 중공반구형(NBC) 다공성 탄소 담체에 각각 약 1.0 wt%의 구리를 담지시켜 두 종류의 촉매를 제조하였고 과산화수소수에 의한 페놀의 수산화 반응에서 촉매의 성능을 두 종류의 서로 다른 용매(물, 아세토니트릴)에 대하여 비교 분석하였다. 촉매에 담지된 구리의 양은 EDS 분석으로 확인하였고 비표면적, 기공 부피, 기공 분포도 등을 비교 분석하였다. 두 종류의 촉매에서 모두 아세토니트릴보다 물에서 더 높은 전환율과 과산화수소 유효도 및 카테콜과 하이드로퀴논의 생성율을 얻을 수 있었고, 물을 용매로 사용했을 때 1.0 Cu/CNS 촉매가 1.0 Cu/NBC 촉매보다 50% 이상의 전환율과 과산화수소 유효도를 보였다.

Contribution of Carbon Dot Nanoparticles in Electrocatalysis: Development in Energy Conversion Process

  • Jana, Jayasmita;Ngo, Yen-Linh Thi;Chung, Jin Suk;Hur, Seung Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권3호
    • /
    • pp.220-237
    • /
    • 2020
  • Modern electrochemical energy devices involve generation and reduction of fuel gases through electrochemical reactions of water splitting, alcohol oxidation, oxygen reduction, etc. Initially, these processes were executed in the presence of noble metal-based catalyst that showed low overpotential and high current density. However, its high cost, unavailability, corrosion and related toxicity limited its application. The search for alternative with high stability, durability, and efficiency led scientists towards carbon nanoparticles supported catalysts which has high surface area, good electrical conductivity, tunable morphology, low cost, ease of synthesis and stability. Carbon nanoparticles are classified into two groups based on morphology, one and zero dimensional particles. Carbon nanoparticles at zero dimension, denoted as carbon dots, are less used carbon support compared to other forms. However, recently carbon dots with improved electronic properties have become popular as catalyst as well as catalyst support. This review focused on the recent advances in electrocatalytic activities of carbon dots. The mechanisms of common electrocatalytic reactions and the role of the catalysts are also discussed. The review also proposed future developments and other research directions to overcome current limitations.

Photoactive Layer Formation with Oven Annealing for a Carbon Electrode Perovskite Solar Cell

  • Kim, Kwangbae;Song, Ohsung
    • 한국재료학회지
    • /
    • 제30권11호
    • /
    • pp.595-600
    • /
    • 2020
  • The photovoltaic properties of perovskite solar cells (PSCs) with a carbon electrode fabricated using different annealing processes are investigated. Perovskite formation (50 ℃, 60 min) using a hot-plate and an oven is carried out on cells with a glass/fluorine doped TiO2/TiO2/ZrO2/carbon structure, and the photovoltaic properties of the PSCs are analyzed using a solar simulator. The microstructures of the PSCs are characterized using an optical microscope, a field emission scanning electron microscope, and an electron probe micro-analyzer (EPMA). Photovoltaic analysis shows that the energy conversion efficiency of the samples fabricated using the hot-plate and the oven processes are 2.08% and 6.90%, respectively. Based on the microstructure of the samples and the results of the EPMA, perovskite is formed locally on the carbon electrode surface as the γ-butyrolactone (GBL) solvent evaporates and moves to the top of the carbon electrode due to heat from the bottom of the sample during the hot plate process. When the oven process is used, perovskite forms evenly inside the carbon electrode, as the GBL solvent evaporates extremely slowly because heat is supplied from all directions. The importance of the even formation of perovskite inside the carbon electrode is emphasized, and the feasibility of oven annealing is confirmed for PSCs with carbon electrodes.