• Title/Summary/Keyword: Carbon Composite

Search Result 2,859, Processing Time 0.03 seconds

Analysis of crack occurs under unsteady pressure and temperature in a natural gas facility by applying FGM

  • Eltaher, Mohamed A.;Attia, Mohamed A.;Soliman, Ahmed E.;Alshorbagy, Amal E.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.97-111
    • /
    • 2018
  • Cracking can lead to unexpected sudden failure of normally ductile metals subjected to a tensile stress, especially at elevated temperature. This article is raised to study the application of a composite material instead of the traditional carbon steel material used in the natural gas transmission pipeline because the cracks occurs in the pipeline initiate at its internal surface which is subjected to internal high fluctuated pressure and unsteady temperature according to actual operation conditions. Functionally graded material (FGM) is proposed to benefit from the ceramics durability and its surface hardness against erosion. FGM properties are graded at the radial direction. Finite element method (FEM) is applied and solved by ABAQUS software including FORTRAN subroutines adapted for this case of study. The stress intensity factor (SIF), temperatures and stresses are discussed to obtain the optimum FGM configuration under the actual conditions of pressure and temperature. Thermoelastic analysis of a plane strain model is adopted to study SIF and material response at various crack depths.

Buckling analysis of embedded laminated plates with agglomerated CNT-reinforced composite layers using FSDT and DQM

  • Shokravi, Maryam
    • Geomechanics and Engineering
    • /
    • v.12 no.2
    • /
    • pp.327-346
    • /
    • 2017
  • Laminated plates have many applications in different industrials. Buckling analysis of these structures with the nano-scale reinforcement has not investigated yet. However, buckling analysis of embedded laminated plates with nanocomposite layers is studied in this paper. Considering the single-walled carbon nanotubes (SWCNTs) as reinforcement of layers, SWCNTs agglomeration effects and nonlinear analysis using numerical method are the main contributions of this paper. Mori-Tanaka model is applied for obtaining the equivalent material properties of structure and considering agglomeration effects. The elastic medium is simulated by spring and shear constants. Based on first order shear deformation theory (FSDT), the governing equations are derived based on energy method and Hamilton's principle. Differential quadrature method (DQM) is used for calculating the buckling load of system. The effects of different parameters such as the volume percent of SWCNTs, SWCNTs agglomeration, number of layers, orientation angle of layers, elastic medium, boundary conditions and axial mode number of plate on the buckling of the structure are shown. Results indicate that increasing volume percent of SWCNTs increases the buckling load of the plate. Furthermore, considering agglomeration effects decreases the buckling load of system. In addition, it is found that the present results have good agreement with other works.

Vibration response of FG-CNT-reinforced plates covered by magnetic layer utilizing numerical solution

  • Cao, Yan;Musharavati, Farayi;Baharom, Shahrizan;Talebizadehsardari, Pouyan;Sebaey, Tamer A.;Eyvazian, Arameh;Zain, Azlan Mohd
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.253-258
    • /
    • 2020
  • Vibration response in a sandwich plate with a nanocompiste core covered by magnetic layer is presented. The core is armed by functionalyy graded-carbon nanotubes (FG-CNTs) where the Mori-Tanaka law is utilized assuming agglomeration effects. The structure plate is located on elastic medium simulated by Pasternak model. The governing equations are derived based on Mindlin theory and Hamilton's principle. Utilizing diffrential quadrature method (DQM), the frequency of the structure is calculated and the effects of magnetic layer, volume percent and agglomeration of CNTs, elastic medium and geometrical parameters of structure are shown on the frequency of system. Results indicate that with considering magnetic layer, the frequency of structure is increased.

Analysis of Thermo Chemically Decomposing Composites for Rocket Thermal Insulators (로켓 방화벽용 열경화성 복합재의 거동해석)

  • Lee, Sunpyo;Lee, Jung-Youn
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.4
    • /
    • pp.1-11
    • /
    • 2001
  • A theory for time-dependent, high temperature ablation of poroelastic carbon composite insulators is applied using finite element methods to determine material properties from experimental data. The theory contains important revisions to that in Lee, Salamon and Sullivan[1] by making a sharp distinction between Biots constants and permeability and setting both to analytical functions of porosity. The finite element program and material modeling has been modified to (1) more closely adhere to porous-material theory, (2) include a newly discovered analytical simplification and (3) refine the material property descriptions. Application to experimental problems and comparisons with data permit determination of Biots constants and permeability and their evolution with respect to matrix decomposition and clearly show how material parameters affect the material response, e.g., amplitude and the location of peaks with respect to temperature. In particular, the response is very sensitive to permeability and dominated by it.

  • PDF

A software-assisted comparative assessment of the effect of cement type on concrete carbonation and chloride ingress

  • Demis, S.;Papadakis, V.G.
    • Computers and Concrete
    • /
    • v.10 no.4
    • /
    • pp.391-407
    • /
    • 2012
  • Utilization of supplementary cementing materials (SCM) by the cement industry, as a highly promising solution of sustainable cement development aiming to reduce carbon dioxide emissions, necessitates a more thorough evaluation of these types of materials on concrete durability. In this study a comparative assessment of the effect of SCM on concrete durability, of every cement type as defined in the European Standard EN 197-1 is taking place, using a software tool, based on proven predictive models (according to performance-related methods for assessing durability) developed and wide-validated for the estimation of concrete service life when designing for durability under harsh environments. The effect of Type II additives (fly ash, silica fume) on CEM I type of cement, as well as the effect of every Portland-composite type of cement (and others) are evaluated in terms of their performance in carbonation and chloride exposure, for a service life of 50 years. The main aim is to portray a unified and comprehensive evaluation of the efficiency of SCM in order to create the basis for future consideration of more types of cement to enter the production line in industry.

Low velocity impact behavior of concrete beam strengthened with CFRP strip

  • Kantar, Erkan;Anil, Ozgur
    • Steel and Composite Structures
    • /
    • v.12 no.3
    • /
    • pp.207-230
    • /
    • 2012
  • Nowadays CFRP (Carbon Fiber Reinforced Polymer) became widely used materials for the strengthening and retrofitting of structures. Many experimental and analytical studies are encountered at literature about strengthening beams by using this kind of materials against static loads and cyclic loads such as earthquake or wind loading for investigating their behavior. But authors did not found any study about strengthening of RC beams by using CFRP against low velocity impact and investigating their behavior. For these reasons an experimental study is conducted on totally ten strengthened RC beams. Impact loading is applied on to specimens by using an impact loading system that is designed by authors. Investigated parameters were concrete compression strength and drop height. Two different sets of specimens with different concrete compression strength tested under the impact loading that are applied by dropping constant weight hammer from five different heights. The acceleration arises from the impact loading is measured against time. The change of velocity, displacement and energy are calculated for all specimens. The failure modes of the specimens with normal and high concrete compression strength are observed under the loading of constant weight impact hammer that are dropped from different heights. Impact behaviors of beams are positively affected from the strengthening with CFRP. Measured accelerations, the number of drops up to failure and dissipated energy are increased. Finite element analysis that are made by using ABAQUS software is used for the simulation of experiments, and model gave compatible results with experiments.

Feasibility of Recycling Residual Solid from Hydrothermal Treatment of Excess Sludge

  • Kim, Kyoung-Rean;Fujie, Koichi;Fujisawa, Toshiharu
    • Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.112-118
    • /
    • 2008
  • Residual solid in excess sludge treated by hydrothermal reaction was investigated as raw material for its recycling. Treated excess sludge and residual solid were also focused on their content change during hydrothermal reaction. Two kinds of excess sludge, obtained from a local food factory and a municipal wastewater treatment process, were tested under various conditions. Following hydrothermal reaction, depending on the reaction conditions, biodegradable substrates in treated excess sludge appeared to increase. The separated residual solid was a composite composed of organic and inorganic materials. The proportion of carbon varied from 34.0 to 41.6% depending on reaction conditions. Although 1.89% of hazardous materials were detected, SiO2 (Quartz) was a predominant constituent of the residual solid. X-ray diffraction (XRD) experiments revealed that the residual solid was of a partially amorphous state, suggesting that the residual solids could be easily converted to stable and non harmful substances through a stabilization process. Thus, this technology could be successfully used to control excess sludge and its reuse.

A Study of Mold Technology for Manufacturing of CFRTP Parts (CFRTP 부품제조를 위한 금형 및 성형 기술에 대한 연구)

  • Jung, Eui-Chul;Kim, Jong-Sun;Son, Jung-Eon;Yoon, Kyung-Hwan;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.25-28
    • /
    • 2017
  • The production of carbon fiber reinforced thermoplastics(CFRTP) parts using an injection/compression molding process that differs from the conventionally used fabrication methods was investigated Before the application of composite molding in the injection/compression molding process, a simple compression molding experiment was performed using a hydraulic press machine to determine the characteristics of resin impregnation and to obtain a basic physical property data for the CFRTP. Based on these results, injection/compression molded specimens were manufactured and an additional insert/over molding process was applied to improve the impregnation rate of the molded specimens. The results demonstrated that the tensile strength of the molded parts using the faster injection/compression process was similar to that of a hydraulic press molded product.

Materials and Characteristics of Emerging Transparent Electrodes (차세대 투명전극 소재의 종류와 특성)

  • Chung, Moon Hyun;Kim, Seyul;Yoo, Dohyuk;Kim, Jung Hyun
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.242-248
    • /
    • 2014
  • Flexibility of a transparent device has been required in accordance with miniaturization and mobilization needs in recent industry. The most representative material used as a transparent electrode is indium tin oxide (ITO). However, a couple of disadvantages of ITO are the exhaustion of natural resource of indium and its inflexibility due to inorganic substance. To overcome the limit of ITO, a variety of alternative materials have been researched on development of transparent electrodes and its properties through composite materials. In this review, we classify some of emerged materials with their general studies.

Development of a Metal Cladding with Protective SiC Composites and the Characteristics on High temperature Oxidation (SiC 복합체 보호막 금속 피복관의 개발 및 고온산화 특성 분석)

  • Noh, Seonho;Lee, Dong-hee;Park, Kwangheon
    • Journal of Surface Science and Engineering
    • /
    • v.48 no.5
    • /
    • pp.218-226
    • /
    • 2015
  • The goal of this study is to investigate a metal cladding that contains SiC composites as a protective layer and analysis the characteristics of the specimens on high temperature oxidation To make SiC composites, the current process needs a high temperature (about $1100^{\circ}C$) for the infiltration of fixing materials such as SiC. To improve this situation, we need a low temperature process. In this study, we developed a low temperature process for making SiC composites on the metal layer, and we have made two kinds: cladding with protective SiC composites made by polycarbosilane(PCS), and a PCS filling method using supercritical carbon dioxide. A corrosion test at $1200^{\circ}C$ in a mixed steam and Ar atmosphere was performed on these specimens. The result show that the cladding with protective SiC composites have excellent oxidation suprression rates. This study can be said to have developed new metal cladding with enhanced durability by using SiC composite as protective films of metal cladding instead of simple coating film.