• Title/Summary/Keyword: Carbon Coating

Search Result 798, Processing Time 0.029 seconds

Synthesis of highly crystalline nanoporous titanium dioxide at room temperature (상온에서 고결정성 나노기공 이산화티탄 제조기술)

  • Chung, Pyung Jin;Kwon, Yong Seok
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.65-78
    • /
    • 2016
  • Initial studies of the photocatalyst has been developed from the field relating to the conversion and storage of solar energy. Recently, the study of the various organic decomposition compound and the water purification and waste water treatment by ultraviolet irradiation in the presence of light or a photocatalyst are being actively investigated. In addition, the oxidized material-carbon nanotubes, graphene-nanocomposites have been studied. Such a complex is suitable as a material constituting the solar cells and photolysis nanoelectronics, including the flexible element due to thermal and chemical stability.

Development of Stretchable PZT/PDMS Nanocomposite Film with CNT Electrode

  • Yun, Ji Sun;Jeong, Young Hun;Nam, Joong-Hee;Cho, Jeong-Ho;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.400-403
    • /
    • 2013
  • The piezoelectric composite film of ferroelectric PZT ceramic ($PbZr_xTi_{1-x}O_3$) and polymer (PDMS, Polydimethylsiloxane) was prepared to improve the flexibility of piezoelectric material. The bar coating method was applied to fabricate flexible nanocomposite film with large surface area by low cost process. In the case of using metal electrode on the composite film, although there is no problem by bending process, the electrode is usually broken away from the film by stretching process. However, the well-attached, flexible CNT electrode on PZT/PDMS film improved flexibility, especially stretchability. PZT particles was usually settled down into polymer matrix due to gravity of the weighty particle, so to improve the dispersion of PZT powder in polymer matrix, small amount of additives (CNT powder, Carbon nanotube powder) was physically mixed with the matrix. By stretching the film, an output voltage of PZT(70 wt%)/PDMS with CNT (0.5 wt%) was measured.

The lifespan improvement of printed electronics roll by hardened Si-DLC coating materials (인쇄전자 롤 수명 향상을 위한 고경도 Si-DLC 코팅 기술)

  • Sin, Ui-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.28-28
    • /
    • 2015
  • 현재 인쇄전자 소자 생산을 위해 사용되고 있는 대부분의 그라비아 롤러는 미세 패턴의 보호와 인쇄 중 마찰에 대한 내구성을 향상시키기 위해 경질 크롬 도금 막이 사용되고 있다. 그러나 경질 크롬 도금 막의 경우 구현할 수 있는 경도(~1000 HV)와 이형성, 내마찰(마찰계수: ~ 0.6) 특성 등에 한계가 있다. 이러한 경질 크롬 도금이 적용된 그라비아 롤은 그 수명과 내구성, 구현할 수 있는 인쇄 품질 및 신뢰성 그리고 인쇄처리 속도 등에 있어 여러 문제가 있다. DLC(Diamond Like amorphous Carbon)는 낮은 마찰계수 값인 0.2 이하와 뛰어난 내마모성, 상대재료에 대한 이형성 등을 겸비한 표면강화 기술로 경질 크롬 도금막 대비 우수한 표면 경도(>1,800 HV) 특성을 갖으며, 합성된 DLC 코팅 막의 경우 정밀 인쇄 제판이 요구하는 표면거칠기를 구현할 가능성이 높다는 장점이 있다. 특히 실리콘이 첨가 된 Si-DLC의 경우 표면의 마찰계수를 0.1 이하까지 낮출 수 있는데 닥터블레이드 및 잉크, 인쇄 기재와의 마찰 훼손을 최소화시켜 그라비아 인쇄 롤의 수명을 향상시킬 수 있다. 또한 PECVD 공정을 이용하여 합성한 Si-DLC는 표면거칠기를 10nm 이하의 경면으로 구현할 수 있으며, 높은 접촉각에 의한 우수한 이형성을 통해 미세 패턴 내부에 전자잉크/페이스트가 잔류되는 현상을 억제할 수 있다. 이는 기존 경질 크롬 도금이 적용된 그라비아 롤에서 발생하는 패턴 내 잉크 잔류-고형화와 그에 의한 사용수명 단축현상을 현저히 개선시킬 수 있다.

  • PDF

Effects of Counterpart Materials on Wear Behavior of Thermally Sprayed STS316 Coatings (STS316 용사코팅층의 마모거동에 미치는 상대마모재의 영향)

  • Lee, Jae-Hong;Kim, Yeong-Sik
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.58-63
    • /
    • 2014
  • This paper deals with the effects of counterpart materials on the wear behavior of thermally sprayed STS316 coatings. STS316 powders were flame-sprayed onto a carbon steel substrate. Dry sliding wear tests were performed using the applied loads of 15 N. AISI52100, $Al_2O_3$, $ZrO_2$ and $Si_3N_4$ balls were used as counterpart materials. Wear behavior of STS316 coatings against different counterpart materials were studied using a scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy (EDS). The results show that the wear behavior of thermally sprayed STS316 coatings strongly depends on the type of counterpart material. Dominant wear mechanism was similar for all studied materials as failure of adhesion film except for Si3N4 used as counterpart material. In the case of Si3N4 used as counterpart material, dominant wear mechanism was abrasion.

Effect of Preparation Condition of Precursor Thin Films on the Properties of CZTS Solar Cells

  • Seong, Si-Jun;Park, Si-Nae;Kim, Dae-Hwan;Gang, Jin-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.318.1-318.1
    • /
    • 2013
  • Nowadays Cu2ZnSnS4 (CZTS) solar cell is attracting a lot of attention as a strong alternative to CIGS solar cell due to nontoxic and inexpensive constituent elements of CZTS. From various processes for the fabrication of CZTS solar cell, solution-based deposition of CZTS thin films is well-known non-vacuum process and many researchers are focusing on this method because of large-area deposition, high-throughput, and efficient material usage. Typically the solution-based process consists of two steps, coating of precursor solution and annealing of the precursor thin films. Unlike vacuum-based deposition, precursor solution contains unnecessary elements except Cu, Zn, Sn, and S in order to form high quality precursor thin films, and thus the precise control of precursor thin film preparation is essential for achieving high efficient CZTS solar cells. In this work, we have investigated the effect of preparation condition of CZTS precursor thin films on the performance of CZTS solar cells. The composition of CZTS precursor solution was controlled for obtaining optimized chemical composition of CZTS absorber layers for high-efficiency solar cells. Pre-annealing process of the CZTS precursor thin films was also investigated to confirm the effect of thermal treatment on chemical composition and carbon residues of CZTS absorber layers. The change of the morphology of CZTS precursor thin film by the preparation condition was also observed.

  • PDF

Fabrication of Gas Diffusion Layer for Fuel Cells Using Heat treatment Slurry Coating Method (열처리 슬러리코팅법을 이용한 연료전지 가스확산층의 제조)

  • Kim, Sungjin;Park, Sung Bum;Park, Yong-Il
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.2
    • /
    • pp.65-73
    • /
    • 2012
  • The Gas Diffusion Layer (GDL) of fuel cell, are required to provide both delivery of reactant gases to the catalyst layer and removal of water in either vapor or liquid form in typical PEMFCs. In this study, the fabrication of GDL containing Micro Porous Layer (MPL) made of the slurry of PVDF mixed with carbon black is investigated in detail. Physical properties of GDL containing MPL, such as electrical resistance, gas permeability and microstructure were examined, and the performance of the cell using developed GDL with MPL was evaluated. The results show that MPL with PVDF binder demonstrated uniformly distributed microstructure without large cracks and pores, which resulted in better electrical conductivity. The fuel cell performance test demonstrates that the developed GDL with MPL has a great potential due to enhanced mass transport property due to its porous structure and small pore size.

Polysulfone/nanocomposites mixed matrix ultrafiltration membrane for the recovery of Maillard reaction products

  • Basu, Subhankar;Mukherjee, Sanghamitra;Balakrishnan, Malini;Deepthi, M.V.;Sailaja, R.R.N.
    • Membrane and Water Treatment
    • /
    • v.9 no.2
    • /
    • pp.105-113
    • /
    • 2018
  • Maillard reaction products like melanoidins present in industrial fermentation wastewaters are complex compounds with various functional properties. In this work, novel ultrafiltration (UF) mixed matrix membrane (MMM) composed of polysulfone (PSF) and nanocomposites was prepared through a phase inversion process for the recovery of melanoidins. Nanocomposites were prepared with acid functionalized multiwalled carbon nanotubes (MWCNTs) as the reinforcing filler for chitosan-thermoplastic starch blend. Higher nanocomposites content in the PSF matrix reduced the membrane permeability and melanoidins retention indicating tighter membrane with surface defects. The membrane surface defects could be sealed with dilute polyvinyl alcohol (PVA) solution. The best performing membrane (1% nanocomposites in 18% PSF membrane sealed with 0.25% PVA coating) resulted in uniform melanoidins retention of 98% and permeability of 3.6 L/m2 h bar over a period of 8h. This demonstrates a low fouling PSF membrane for high melanoidins recovery.

Critical Influence of Rivet Head Height on Corrosion Performance of CFRP/Aluminum Self-Piercing Riveted Joints

  • Karim, Md Abdul;Bae, Jin-Hee;Kam, Dong-Hyuck;Kim, Cheolhee;Park, Yeong-Do
    • Corrosion Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.92-101
    • /
    • 2019
  • This study investigates how rivet head height affects the corrosion performance of carbon fiber reinforced plastic (CFRP) to aluminum alloy self-piercing riveted joints. Specimens with two different head heights were prepared. A rivet head protruding out of the top CFRP laminate forms the proud head height while a rivet head penetrating into the top CFRP generates the flush head height. The salt spray test evaluated corrosion performance. The flush head joints suffered from severe corrosion on the rivet head. Thus, the tensile shear load of flush head joints was substantially reduced. Electrochemical corrosion tests investigated the corrosion mechanisms. The deeper indentation of the flush head height damaged the CFRP around the rivet head. The exposure of damaged fibers from the matrix increased the cathodic potential of local CFRP. The increased potential of damaged CFRP accelerated the galvanic corrosion of the rivet head. After the rivet head coating material corroded, a strong galvanic couple was formed between the rivet head base metal (boron steel) and the damaged CFRP, further accelerating the flush rivet head corrosion. The results of this study suggest that rivet head flushness should be avoided to enhance the corrosion performance of CFRP to aluminum alloy self-piercing riveted joints.

Honeycomb-structured Fe2O3 Catalysts for Low-temperature CO Oxidation (산화철 허니컴 구조 촉매를 활용한 일산화탄소 저온 산화반응 연구)

  • Lee, Donghun;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.151-154
    • /
    • 2019
  • We report the effective fabrication processes for more practical monolith catalysts consisting of washcoated alumina on a cordierite honeycomb monolith (CHM) and iron oxides nanoparticles in the alumina prepared by a simple dry coating method. It is confirmed that iron oxide nanoparticles were well deposited into the mesopore of washcoated alumina which is formed on the corner wall of honeycomb channel, and the effect of annealing temperature was evaluated for carbon monoxide oxidation catalysts. $Fe_2O_3/{\gamma}-Al_2O_3/CHM$ catalysts annealed at $350^{\circ}C$ exhibited the most enhanced catalytic activity, 100% conversion efficiency at more than $200^{\circ}C$ operating temperature.

Atmospheric Corrosion and Surface Appearance of Galvalume Steel following Outdoor Exposure for 36 Months: A Korean Study (36개월간 국내 옥외폭로시험에 따른 갈바륨 강판의 대기부식거동 및 표면외관 변화)

  • Kim, K.T.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.326-336
    • /
    • 2020
  • Galvalume steel (GL) is widely used in marine and industrial environments. It is characterized by better corrosion resistance than carbon steel. However, corrosion and economic losses may occur as the usage time is increased. Therefore, in this study, an outdoor exposure test of GL for 36 months was conducted across six regions of Korea. Parameters such as corrosion rate, chrominance (color, chroma, and brightness), glossiness, and surface appearance were analyzed. The results showed no significant change in appearance, and the initial corrosion rate was large, but a tendency to decrease with time was observed. Increased outdoor exposure time led to increase in the level of corrosion products. In the case of coastal areas where S, Cl, and other elements were detected, a relatively high decrease in Zn content was observed. Al forms a protective oxide film and exists in the coating layer, but Zn dissolves due to its chemical activity and low potential.