• 제목/요약/키워드: Carbon Ceramic Composite Disc

검색결과 6건 처리시간 0.021초

카본 세라믹 복합재 디스크의 벤트 구조 최적화를 통한 냉각성능 향상에 관한 연구 (A Study on Improvement of Cooling Performance through Vent Structure Optimization of Carbon Ceramic Composite Disc)

  • 심재훈;신웅희;이중희;전갑배;김병철;곽정후;임동원;현은재;전태형;이재만
    • 자동차안전학회지
    • /
    • 제11권1호
    • /
    • pp.23-29
    • /
    • 2019
  • Recently, use of composite materials has been increasing for body structures and chassis parts in the car industry because of weight reduction effect and excellent mechanical thermal characteristics. However, application of composite materials in brake system is very difficult because it is hard to obtain enough brake performance due to low heat storage capacity of the composite materials. In this paper, we will present new carbon ceramic composite disc with high flow characteristic. To obtain this characteristic, new vent structures were designed by using ARIZ method and substance-field model analysis. The flow effect of these vent structures on the brake performance was verified by pugh matrix and cooling test. The test results show improvement of cooling performance up to $30^{\circ}C$. Finally, These results will improve brake the reliability of the brake performance for the high performance vehicles and electric vehicles.

브레이크 디스크 로터 표면 수직 구멍의 영향에 관한 연구 (A Study on the Cross-drilling Effects of Brake Disc Rotor)

  • 서영진;오제하;이준상;강경수;정근성
    • 한국자동차공학회논문집
    • /
    • 제16권1호
    • /
    • pp.100-105
    • /
    • 2008
  • Cross-drilling on the brake disc is generally known as a way of improving cooling efficiency. In other theories, cross-drilled holes act like a path of gas or water and are also known that they can reduce fading and wetting of brake rotors. However, in disc rotors with cross-drilling, thermal crack phenomena have been reported more frequently and more manufacturing cost should be paid than non cross-drilled disc rotors. In this study, to examine various effects of cross-drilling on the brake disc, two kinds of brake disc rotors, cross-drilled and non cross-drilled, were used in computational fluid dynamic analyses and dynamometer tests.

Synthesis and Thermoelectric Properties of Carbon Nanotube-Dispersed Bi2Te3 Matrix Composite Powders by Chemical Routes

  • Kim, Kyung Tae;Son, Injoon;Ha, Gook Hyun
    • 한국분말재료학회지
    • /
    • 제20권5호
    • /
    • pp.345-349
    • /
    • 2013
  • Carbon nanotube-dispersed bismuth telluride matrix (CNT/$Bi_2Te_3$) nanopowders were synthesized by chemical routes followed by a ball-milling process. The microstructures of the synthesized CNT/$Bi_2Te_3$ nanopowders showed the characteristic microstructure of CNTs dispersed among disc-shaped $Bi_2Te_3$ nanopowders with as an average size of 500 nm in-plane and a few tens of nm in thickness. The prepared nanopowders were sintered into composites with a homogeneous dispersion of CNTs in a $Bi_2Te_3$ matrix. The dimensionless figure-of-merit of the composite showed an enhanced value compared to that of pure $Bi_2Te_3$ at the room temperature due to the reduced thermal conductivity and increased electrical conductivity with the addition of CNTs.

탄소섬유가 혼합된 세라믹 복합재 제동마찰재의 마찰·마모 특성 (Tribological Properties of Ceramic Composite Friction Materials Reinforced by Carbon Fibers)

  • 구병춘;김민수
    • Tribology and Lubricants
    • /
    • 제33권1호
    • /
    • pp.15-22
    • /
    • 2017
  • Because the running speed of vehicles is increasing and a shorter braking distance is required, high heat-resistant brake pads are needed to satisfy the requirements of customers and car makers. In the near future, hazardous materials such as Cu, Cr, Zn, and Sb will be restricted from use in friction materials. Ceramic composites reinforced by carbon fibers are good candidates for eco-friendly friction materials. In this study, we develop ceramic composite friction materials. The friction materials are composed of carbon fibers, Si, SiC, graphite, and phenol resin and are prepared by hot forming and heat treatment at high temperatures. The density, void ratio, and compressive strength are $1.59-1.66g/cm^3$, 16.6-20, and 70-90 MPa, respectively. Friction and wear tests are performed using a pin-on-plate-type reciprocating friction tester at 25, 100, and $200^{\circ}C$. The counterpart material is a CrMoV steel extracted from a KTX brake disc. Friction coefficient, wear amount, and wear mechanism are measured and examined. We determine that the friction coefficients depend on the temperature and the fluctuation of the friction coefficients is larger at higher temperatures. The amount of wear increases with the surface temperatures of the specimens. The tribological properties of the developed composites are similar to those of a Cu-based sintered friction material. Through this study, it is confirmed that ceramic composite materials can be used as friction materials.

제동성능 고급화 인자 분석을 통한 복합재 제동시스템 개발에 관한 연구 (A Study on the Development of Composite Brake System through Analysis of advanced Braking Performance Factors)

  • 심재훈;신웅희;이중희;황세라;임원석;김병철;임동원;현은재;이재만;김홍기
    • 자동차안전학회지
    • /
    • 제12권1호
    • /
    • pp.26-32
    • /
    • 2020
  • The luxury car market has been steadily growing for the last 10 years and it might keep expanding in the future. Furthermore, it is expected to be a very competitive market because luxury cars are considred to reflect the technology level of motor companies. For this reason, it is very important for motor companies to improve performances of luxury vehicles. However, it takes years for the companies to increase the technology level for the high performances. In this paper, we aim to analyze the technologies for high quality brake perfomances through investigation of two luxury vehicle models and develop a new high performance brake system. First, we found out a variety of effective factors for the high performances. Second, we conducted the brake performance analysis to figure out the relationship between brake effort and brake feeling. Finally, we develped the new brake system using carbon ceramic composite materials to satisfy the high quality brake performances.

Tribological performance of UHMWPE reinforced with carbon nanotubes in bovine serum

  • Zoo, Yeong-Seok;Lim, Dae-Soon
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.363-364
    • /
    • 2002
  • Although the factors that cause the failure of orthopedic implants were not clearly determined, it was reported that the shapes of wear debris affect the tribological behavior of artificial implant. Many researches were conducted to examine the wear mechanism by debris but the role of debris shape in inflammatory reaction remains unclear. To observe the debris shape by addition of reinforcement, carbon nanotubes ( CNTs ) were added to ultra high molecular weight polyethylene ( UHMWPE ) to investigate the reinforcement effect of CNTs. CNTs which have a diameter of about 10-50 nm, while their length is about 3-5 nm were produced by the catalytic decomposition of the acetylene gas using a tube furnace. Plate on disc type wear test were performed to evaluate the tribological performance of UHMWPE composites reinforced with CNTs in lubricating condition ( bovine serum ). The wear losses of CNT added UHMWPE in bovine serum were significantly reduced. Worn surface and wear debris of UHMWPE with CNTs and without CNTs were compared to investigate the reinforcement effect of CNT on tribological behavior.

  • PDF