• Title/Summary/Keyword: Carbon/epoxy composite

Search Result 624, Processing Time 0.028 seconds

Enhanced Manufacturing and Performance Analysis of Flexible Composite Propeller (유연 복합재료 프로펠러 제작개선 및 성능분석)

  • Lee, Sang-Gab;Nam, Jae-Hyung;Hyun, Beom-Soo;Paik, Bu-Geun;Lee, Chang-Sup;Jang, Hyun-Gil;Nho, In Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.6
    • /
    • pp.521-527
    • /
    • 2012
  • It is well known that flexible composite material propeller has superior radiation noise characteristics with outstanding damping effects. In this paper, three flexible composite material propellers were produced using compression molding process, and their hydrodynamic performances and radiation noise characteristics were measured. One propeller, C1, was made up from carbon/epoxy composite laminates, and the other two ones, G1 and G2, from glass/epoxy ones. Their fiber arrays were selected by the progressive damage structural analysis of propellers using composite material model MAT_162 (Composite_DMG_MSC) linked with LS-DYNA code. Carbon/epoxy and glass/epoxy composite specimen tests were performed, their damage mechanisms were figured out, and their parameters were calibrated by their progressive damage structural analysis according to their damage criteria.

Environmental aging characteristics of carbon/epoxy composite for train carbody (철도차량 차체용 탄소섬유/에폭시 복합재의 환경노화 특성 평가)

  • Oh, Jin-Oh;Yoon, Sung-Ho;Kim, Jung-Suk;Han, Seong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.824-829
    • /
    • 2007
  • Mechanical and thermal analysis properties of carbon fiber/epoxy composite for train carbody were evaluated by varying with environmental factors such as ultraviolet, temperature, and moisture. Accelerated environmental aging tester was utilized for this study. Testing temperature was set to $80^{\circ}C$ and ultraviolet was obtained through xenon-arc lamp. To consider moisture, water sprayed on specimen for 18 minutes every 2 hour. All the specimens were made of CF1263/Epoxy composite. Mechanical properties such as tensile, bending, and shear properties were evaluated through a material testing system. Also, thermal analysis properties such as storage shear modulus, loss shear modulus, and tan ${\delta}$ were measured through dynamic mechanical analyzer. Finally surfaces of the composite exposed to environmental factors were examined using a scanning electron microscope. From experimental results, those properties of CF1263/Epoxy composite were shown to be slightly decreased due to environmental factors.

  • PDF

Properties of Conductive Polymer Composite Films Fabricated under High Intensity Electric Fields : Effect of CF Sizing Treatment (고전기장을 이용한 전도성 고분자 복합필름의 제조 및 특성 연구 : 탄소섬유 Sizing처리가 탄소섬유/폴리에틸렌 필름의 특성에 미치는 영향)

  • 고현협;김중현;임순호;김준경;최철림
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.293-301
    • /
    • 2001
  • Electrically conductive carbon fiber/high density polyethylene (CF/HDPE) composite films were fabricated by new method, so called electron-ion technology (EIT) and the effects of CF epoxy sizing on the volumetric resistivity. tensile strength and interphase properties of the films were investigated. While epoxy sizing increased conductivity of composite films resulting from enhanced tunneling effect it reduced interphase adhesion between CF and HDPE because polar epoxy sizing and nonpolar HDPE are incompatible. Consequently epoxy sized CF(CF(S)) caused significant reduction in the volumetric resisitivity and tensile strength of composite films when compared with unsized CF(CF(U)). Epoxy sizing reduced nucleating efficiency of CF(S), therefore CF(S)/HDPE composite films showed nonuniform transcrystalline layer when compared with CF(U)/HDPE composite films.

  • PDF

Properties of Mechanical Joint by Carbon Fiber/Epoxy Sandwich Composite Panels (탄소섬유/Epoxy 샌드위치 복합재판넬의 기계적 취부특성평가)

  • Oh, K.;Lee, S.;Jeong, J.;Cho, S.;Kim, J.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.121-124
    • /
    • 2005
  • This paper was about experimental test properties by mechnical joint of CF1263/Epoxy Al honeycomb panels. In case of mechanical joint using screw, nut shall be secured over than minimize third screw pitch. In case of insert backsheet for increase of joint force, increase weight for assemble by screw pitch. In case of insert backsheet with CF1263/Epoxy, predominant save weight and minimazer of displacement by tensile weight moreover predominant strength. In case of mechanical joint by rivet, rivet of Monobolt has over-hole in hole of CF1263/Epoxy but rivet of PROTRUDING has predominant of mechanical joint.

  • PDF

A Study on the Characteristics of New Type of Composite Bipolar Plate for the PEM Fuel Cell (고분자전해질 연료전지용 새로운 타입의 복합재료 분리판의 특성연구)

  • Kim, Jong-Wan;Lee, Jin-Sun;Sun, Kyung-Bok;Lee, Joong-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.180-183
    • /
    • 2009
  • Composite bipolar plates offer several advantages of low cost, light weight, and ease of manufacturing compared to traditional graphite plate. However, it is difficult to achieve both high electrical conductivity and high flexural strength. In this study, the hybrid carbons filled epoxy composite bipolar plates were fabricated to test electrical conductivity and flexural properties. Graphite powders were used as the main conducting filler and continuous carbon fiber fabrics were inserted to improve the mechanical properties of the composite. This hybrid composite showed improved in-plane electrical conductivity and flexural property. The moldability of the hybrid composite was also improved comparing to the continuous prepreg composite. This study suggested that the continuous carbon fiber inserted graphite/epoxy composites can be a potential candidate material to overcome the disadvantages of conventional graphite composite or continuous prepreg composite bipolar plates.

  • PDF

Fabrication and Electromagnetic Characteristics of Multi-walled Carbon nanotube/Epoxy Composites (다중벽 나노튜브/에폭시 복합재의 제작과 전자기적 특성)

  • 이상의;박기연;이원준;김천곤;한재흥
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.107-110
    • /
    • 2003
  • The electromagnetic intereference(EMI) shielding is very essential for commercial and military purposes. We fabricated multi-walled carbon nanoube(MWNT)/epoxy composites and studied the electromagnetic characteristics of the composites before we study the characteristics of MWNT-filled glass fiber-reinforced composites. After setting up the fabrication process, we measured the permittivities of MWNT/epoxy composites with process variables and MWNT concentrations in X-band(8.2GHz- 12.4GHz). Process variables changed the degree of dispersion, which influenced permittivities and permittivities increased rapidly from 0.5wt% to 1.0wt%.

  • PDF

Evaluation of Mixed-mode Interlaminar Fracture Toughness of Carbon Fabric/Epoxy Composites for Tilting Train Carbody (틸팅차량용 탄소섬유직물/에폭시 복합재의 혼합모우드 층간파괴인성 평가)

  • Yun, Seong-Ho;Heo, Gwang-Su;O, Jin-O;Lee, Sang-Jin;Jeong, Jong-Cheol;Kim, Jeong-Seok
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.256-259
    • /
    • 2005
  • Mixed-mode interlaminar fracture toughness of carbon fabric/epoxy composites, which are applicable to tilting train carbody, was evaluated through the MMB (Mixed-mode bending) test. Specimens were made of CF3327 plain woven fabric with epoxy and a starter delamination at one end was made by inserting Teflon film with the thickness of 12.5 μ m. Mixed-mode interlaminar fracture test was conducted for 6 types of specimens with the mode II ratio of 20 ,35, 50, 65, 80, 90%. Also crack propagating behaviors and fractured surfaces were examined through an optical travelling scope and a scanning electron microscope, respectively.

  • PDF

A Study on Variations of Elastic Modulus of Carbon-epoxy Composites with Thermal Fatigue Cycles (열피로가 부가된 Carbon-Epoxy 복합재료의 탄성계수 변화에 관한 연구)

  • Lee, Dong-Sik;Kim, Hyeong-Sam;Lee, Jae-Hyeok;Park, Se-Man
    • Korean Journal of Materials Research
    • /
    • v.9 no.8
    • /
    • pp.763-767
    • /
    • 1999
  • Composite materials have been increasingly used in automotive and aircraft industries, naturally leading to active researches on the materials. Carbon-epoxy composites, one of major composite materials, are investigated to determine their thermal characteristics. Under conditions of thermal fatigues composed of repeated heatings and coolings, variations of elastic constants are studied for the carbon-epoxy composites to reveal the thermal nature of the composites. In general, composite materials are known to have decreasing elastic constants with increasing temperatures. However, in contrary to this commonly observed behavior, the results obtained in this investigation for the elastic constants of the carbon-epoxy composites show unexpected phenomena in that the elastic constants initially increase with increasing temperatures to certain point and decrease later with further increase in temperatures when the carbon-epoxy composites are subjected to thermal fatigues.

  • PDF

Self-Sensing of Single Carbon Fiber/Carbon Nanotube-Epoxy Composites Using Electro-Micromechanical Techniques and Acoustic Emission (전기적-미세역학시험법과 음향방출을 이용한 단일 탄소섬유/탄소나노튜브-에폭시 나노복합재료의 자체-감지능)

  • Park, Joung-Man;Jang, Jung-Hoon;Wang, Zuo-Jia;Kwon, Dong-Jun;Park, Jong-Kyu;Lee, Woo-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.411-422
    • /
    • 2010
  • Self-sensing on micro-failure, dispersion degree and relating properties, of carbon nanotube(CNT)/epoxy composites, were investigated using wettability, electro-micromechanical technique with acoustic emission(AE). Specimens were prepared from neat epoxy as well as composites with untreated and acid-treated CNT. Degree of dispersion was evaluated comparatively by measuring volumetric electrical resistivity and its standard deviation. Apparent modulus containing the stress transfer was higher for acid-treated CNT composite than for the untreated case. Applied cyclic loading responded well for a single carbon fiber/CNT-epoxy composite by the change in contact resistivity. The interfacial shear strength between a single carbon fiber and CNT-epoxy, determined in a fiber pullout test, was lower than that between a single carbon fiber and neat epoxy. Regarding on micro-damage sensing using electrical resistivity measurement with AE, the stepwise increment in electrical resistivity was observed for a single carbon fiber/CNT -epoxy composite. On the other hand, electrical resistivity increased infinitely right after the first carbon fiber breaks for a single carbon fiber/neat epoxy composite. The occurrence of AE events of added CNT composites was much higher than the neat epoxy case, due to micro failure at the interfaces by added CNTs.

Design and Analysis of Electromagnetic Wave Absorbing Structure Using Layered Composite Plates (적층 복합재 판을 이용한 전자기파 흡수 구조체의 설계)

  • 오정훈;홍창선;오경섭;김천곤;이동민
    • Composites Research
    • /
    • v.15 no.2
    • /
    • pp.18-23
    • /
    • 2002
  • The absorption and the interference shielding of the problems thor both commercial and military purposes. In this study, the minimization of the electromagnetic wale reflections using composite layers with different dielectric properties was performed. Dielectric constants were measured for glass/epoxy composites containing conductive carbon blacks and carbon/epoxy fabric composites. Using the measured permittivities of the composites having various carbon black contents, the optimal electromagnetic wave absorbing structure in X-band(8.2GHz-12.4GHz) was determined. The optimal multi-layered composite plates have the thickness of 2.6mm. The maximum reflection loss is -30dB at 10GHz, and the bandwidth haying the absorptivity lower than -l0dB is about 2GHz.