• Title/Summary/Keyword: Carbon/V

Search Result 1,653, Processing Time 0.031 seconds

Porous Electrode manufacture by catalyst powdering method for PAFC (촉매분말법에 의한 PAFC용 다공성 전극제작)

  • 김영우;이주성
    • Journal of Energy Engineering
    • /
    • v.2 no.2
    • /
    • pp.194-199
    • /
    • 1993
  • Gas diffusion passes are introduced to catalyst layer so as to enlarge reaction region in cathode and anode and then improve electrode performances. The catalyst layer was manufactured with PTFE/carbon (none catalyst loaded) for gas diffusion and Pt/carbon (10 w/o Pt catalyst loaded) by varing the mixing ratio of (PTFE/carbon) to (Pt/carbon) by catalyst powdering method. The electrodes made by mixing Pt(10 w/o)/carbon powders and PTFE/carbon powders containing 60 w/o PTFE at the ratio of 7 : 3 showed the best electrode performances. It was known that by comparing the porosities to electrode performances the electrode performances were increased as both macro pore for gas diffusion and micro pore for electrolyte intrusion were formed much more. The platinum catalyst content in electrode was 0.2 mg/$\textrm{cm}^2$ and the PTFE content was 42 w/o. The electrode performance in unit cell was 220 ㎃/$\textrm{cm}^2$/0.7 V at operating temperature of 150$^{\circ}C$.

  • PDF

Effect of Graphitized Carbon Supports on Electrochemical Carbon Corrosion in Polymer Electrolyte Membrane Fuel Cells (탄소 담지체의 결정성에 따른 고분자전해질형 연료전지의 내구성 평가 연구)

  • Oh, Hyung-Suk;Sharma, Raj Kishore;Haam, Seung-Joo;Lee, Chang-Ha;Kim, Han-Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.142-147
    • /
    • 2009
  • The influence of graphitization of carbon support on the electrochemical corrosion of carbon and sintering of Pt particles are investigated by measuring $CO_2$ emission at a constant potential of 1.4 V for 30 min using on-line mass spectrometry and cyclic voltammogram. In comparison to commercial Pt/C (from Johnson Matthey), highly graphitized carbon nanofiber (CNF) supported Pt catalyst exhibits lower performance degradation and $CO_2$ emission. As the more carbon corrosion occurred, the more prominent changes were detected in electrochemical characteristics of fuel cell. This indicates that the carbon corrosion affects significantly the fuel cell durability. From the observed results, CNF is considered to be more corrosion resistant material as a catalyst support. However, CNF shows higher aggregation of Pt particles under repeated cyclic voltammetry between 0 and 0.8 V where the carbon corrosion is not initiated.

Field emission characteristics of carbon nanfiber bundles

  • Kim, Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.5
    • /
    • pp.211-214
    • /
    • 2004
  • Carbon nanofiber bundles were formed on silicon substrate using microwave plasma-enhanced chemical vapor deposition system. These bundles were vertically well-grown under the high negative bias voltage condition. The bundles were composed of the individual carbon nanofiber having less than 100 nm diameters. Turn-on voltage of the field emission was measured around 0.8 V/$\mu\textrm{m}$. Fowler-Nordheim plot of the measured values confirmed the field emission characteristic of the measured current.

Analysis and Mechanistic Investigation of Redox Process of 2-Amino-1-cyclopentene-1-dithiocarboxylate by Adsorptive Stripping Voltammetry on Glassy Carbon Electrode (Glassy Carbon 전극에서의 벗김 전압-전류법을 이용한 2-Amino-1-cyclopentene-1-dithiocarboxylate 의 분석과 전극 반응 메카니즘의 연구)

  • Yoon-Bo Shim;Duk-Soo Park;Sung-Nak Choi;Mi-Sook Won
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.37-47
    • /
    • 1988
  • The electrochemical behavior of 2-Amino-1-cyclopentene-1-dithiocarboxylate (acdc) was investigated by the use of polarography, cyclic voltammetry and cathodic stripping voltammetry at glassy carbon electrode. In this study, it was found that the dimer of the acdc was deposited on the glassy carbon electrode via one-electron oxidation process at +0.25V vs. SCE. The ring formation between two dithio group occurs along with the elimination of one sulfur atom. The elimination of sulfur atom occurs via two electron oxidation process at +0.8V vs. SCE. The most sensitive cathodic stripping peak due to the formation of the dimer was observed at -0.85V vs. SCE. The peak relationship between current and concentration was fairly linear in the range of 3${\times}10^{-5}{\sim}1.0{\times}10^{-6}$M. The preconcentration procedure enhanced the sensitivity about 100 times for the analysis of acdc using diffusion current. Detection limit was found to be $2.5{\times}10^{-7}$M and relative standard deviation was ${\pm}$4.1 % at $5.0{\times}10^{-6}$M DC polarography.

  • PDF

Effect of Culture Conditions on Astaxanthin Formation in Red Yeast Xanthophyllomyces dendrorhous Mutant JH1

  • Kim Jeong-Hwan;Choi Seok-Keun;Park Young-Sam;Yun Cheol-Won;Cho Won-Dai;Chee Kew-Mahn;Chang Hyo-Ihl
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.438-442
    • /
    • 2006
  • The formation of astaxanthin by Xanthophyllomyces dendrorhous mutant JH1 depends on the culture conditions. Therefore, the effects of inoculation rate (1-5%, v/v) and medium compositions (various carbon and nitrogen sources) on cell growth and astaxanthin formation in X. dendrorhous mutant JH1 were investigated. Inoculation at 3% (v/v) was optimal for cell growth and astaxanthin formation. The most effective carbon source for cell growth and astaxanthin formation was glucose, and the best nitrogen source was yeast extract. The 3% (w/v) glucose and 0.2% (w/v) yeast extract showed the best effect on cell growth and astaxanthin formation, compared with others tested. The 3% glucose, 0.2% yeast extract, $0.15%\;KH_{2}PO_{4}$, $0.05%\;MgSO_4$, $0.01%\;MnSO_4$, and $0.01%\;CaCl_2$ were selected for cell growth and astaxanthin formation. Under the conditions selected, the maximum concentrations of cell and astaxanthin obtained after 168 h of cultivation were 5.43 g/l and 28.20 mg/l, respectively.

Measurement of Linear Energy Spectra for 135 MeV/u Carbon Beams in HIMAC Using Prototype TEPC (프로토 타입 조직등가비례계수기의 중입자가속기연구소의 135 MeV/u 탄소 이온에 대한 선형에너지 스펙트럼 측정)

  • Nam, Uk-Won;Lee, Jaejin;Pyo, Jeonghyun;Park, Won-Kee;Moon, Bong-Kon;Lim, Chang Hwy;Moon, Myung Kook;Kitamure, Hisashi;Kobayashi, Shingo;Kim, Sunghwan
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.197-201
    • /
    • 2014
  • TEPC (Tissue Equivalent Proportional Counter) was usually used for high LET radiation dosimetry. We developed a prototype TEPC for micro-dosimetry in the range of $0.2{\sim}300 keV/{\mu}m$. And, the simulated site diameter of the TEPC is $2{\mu}m$, of similar size to a cell nucleus. For purposes of characterization the response for high LET radiation of the TEPC has been investigated under 135MeV/u Carbon ions in HIMAC (Heavy Ion Medical Accelerator). We determined the gas multiplication factor and measured the lineal energy spectrum [yd(y)] of 135 MeV/u Carbon ions. The value of the gas multiplication factor was 315 at 700 V bias voltage. As a result of the experiment, we could more understand the performance of the TEPC for high LET (Linear Energy Transfer) radiation. And the procedure of high LET radiation dosimetry using TEPC is established.

Hydrated Vanadium Pentoxide/Graphene Oxide Nanobelts for Enhanced Electrochemical Performance

  • Hyegyeong Hwang;Jinsung Kwak
    • Korean Journal of Materials Research
    • /
    • v.34 no.8
    • /
    • pp.387-394
    • /
    • 2024
  • Transition metal oxide-based materials have mainly been studied as electrodes for energy storage devices designed to meet essential energy demands. Among transition metal oxide-based materials, hydrated vanadium pentoxide (V2O5·nH2O), a vanadium oxide material, has demonstrated great electrochemical performance in the electrodes of energy storage devices. Graphene oxide (GO), a carbon-based material with high surface area and high electrical conductivity, has been added to V2O5·nH2O to compensate for its low electrical conductivity and structural instability. Here, V2O5·nH2O/GO nanobelts are manufactured with water without adding acid to ensure that the GO is uniformly dispersed, using a microwave-assisted hydrothermal synthesis. The resulting V2O5·nH2O/GO nanobelts exhibited a high specific capacitance of 206 F/g and more stable cycling performance than V2O5·nH2O without GO. The drying conditions of the carbon paper electrodes also resulted in more stable cycling performance when conducted at high vacuum and high temperature, compared with low vacuum and room temperature conditions. The improvement in electrochemical performance due to the addition of GO and the drying conditions of carbon paper electrodes indicate their great potential value as electrodes in energy storage devices.

Carbon Dioxide Reduction to Alcoholson Perovskite-Type $La_{0.9}$$Sr_{0.1}$$CuO_3$ Electrodes (페로브스카이트 ($La_{0.9}$$Sr_{0.1}$$CuO_3$) 전극에서 이산화탄소의 전해환원에 의한 알콜류 생성)

  • 김태근;임준혁
    • Journal of Environmental Science International
    • /
    • v.5 no.5
    • /
    • pp.677-682
    • /
    • 1996
  • The electrochemical carbon dioxide reduction to produce acetaldehyde, methanol and ethanol is investigated by using perovskite type electrode ($La_{0.9}$$Sr_{0.1}$$CuO_3$). The experiments were Performed under 100 mA/cm2 and -2 to -2.5 V vs. Ag/AgCl. The highest faradaic efficiencies for methanol, ethanol, acetaldehyde were 11.6, 15.3, and 6.2%, respectively. The experimental data demonstrated that the capability of the perovskite type oxide for the electrode of electrochemical carbon dioxide reduction to produce alcohols was superior to other metal electrode. Key words : Perovskite, Electrode, Alcohol Formation, Electrochemical Reduction, Carbon Dioxide Fixation.

  • PDF

Electrosorption of U(IV) by Electochemically Modified Activated Carbon Fibers

  • Jung, Chong-Hun;Oh, Won-Zin;Lee, Yu-Ri;Park, Soo-Jin
    • Carbon letters
    • /
    • v.6 no.1
    • /
    • pp.25-30
    • /
    • 2005
  • The electrosorption of U(VI) from waste water was carried out by using an activated carbon fiber (ACF) felt electrode in a continuous electrosorption cell. In order to enhance the electrosorption capacity at a lower potential, the ACF was electrochemically modified in an acidic and a basic solution. Pore structure and functional groups of the electrochemically modified ACF were examined, and the effects of the modification conditions were studied for the adsorption of U(VI). Specific surface area of all the ACFs was decreased by this modification. The amount of the acidic functional groups decreased with a basic modification, while the amount increased a lot with an acidic modification. The electrosorption capacity of U(VI) decreased on the acid modified electrode due to the shielding effect of the acidic functional groups. The base modified electrode enhanced the capacity due to a reduction of the acidic functional groups. The electrosorption amount of U(VI) on the base modified electrode at .0.3 V corresponds to that of the as-received ACF electrode at .0.9 V. Such a good adsorption capacity was due to a reduction of the shielding effect and an increase of the hydroxyl ions in the electric double layer on the ACF surface by the application of negative potential.

  • PDF