• 제목/요약/키워드: CarSim

검색결과 152건 처리시간 0.024초

다물체 동역학해석을 이용한 DMT 화차의 주행특성 연구 (Multibody Dynamic Simulation and Running Characteristics of DMT Freight)

  • 이승일;엄범규;이희성
    • 한국소음진동공학회논문집
    • /
    • 제19권1호
    • /
    • pp.35-41
    • /
    • 2009
  • Through the multibody dynamic simulation, the analysis model of the modalohr freight car of the DMT freight car was developed. By using the developed analysis model, the running dynamic characteristics was inquired through the dynamic analysis about the modalohr freight car. As the running speed and the primary suspension were increased, the lateral and vertical vibration accelerations of the car-body and the bogie were also increased. In case of the lateral vibration acceleration of the car-body, however, review should be considered since it can be influenced by the nonlinear characteristic of the primary suspension. The lateral and vertical vibration of the car-body were generated at the frequency of $2{\sim}3\;Hz$ and $7{\sim}8\;Hz$. And the lateral and vertical vibration of the bogie were generated at the frequency of $25{\sim}35\;Hz$ at the low speed section, $40{\sim}50\;Hz$ at the high speed section.

차량사고 위험도를 고려한 방풍벽 설치기준 (Decision Making Process for Wind Barrier Installation Considering Car Accident Risk)

  • 김동현;이일근;권순덕;조병완
    • 한국전산구조공학회논문집
    • /
    • 제23권1호
    • /
    • pp.17-26
    • /
    • 2010
  • 본 연구에서는 강풍에 의한 차량의 주행안정성 확보를 위해 설치하는 방풍벽의 설치기준을 제안하였다. 이를 위하여 먼저 차량전용해석 수단인 CarSim 및 TruckSim을 사용하여 풍속 및 차량속도에 따른 횡방향 이탈량을 계산하고, 이로부터 차종별 위험 풍속을 결정하였다. 그리고 방풍벽 설치 여부의 판단을 위해 방풍벽 설치로 인해 얻을 수 있는 사고위험과 주행편익 등을 생애주기 동안의 비용으로 환산하였다. 사고위험 계산을 위해 해당지역의 풍속확률분포, 일평균통행량, 차종별 혼입율 및 구간풍속 지속시간 등을 이용하였다. 방풍벽 설치 전과 후의 총 비용과 편익을 비교하여 방풍벽 설치로 인한 편익이 설치 비용보다 큰 경우 방풍벽을 설치하는 것으로 판정하였다. 수치해석을 통해 고속도로 상의 두 곳을 대상으로 방풍벽 설치 여부에 대한 판정을 수행하였다.

브레이크 게인 적응 휠 슬립 제어에 관한 연구 (A Study on Brake Gain Adaptive Wheel Slip Control)

  • 조준상;유승진;이교일
    • 유공압시스템학회논문집
    • /
    • 제4권1호
    • /
    • pp.13-17
    • /
    • 2007
  • The brake gain adaptive wheel slip controller for a vehicle is designed in this paper. The brake gain from braking pressure to braking torque defined by friction coefficient, friction area and effective friction radius is estimated by the adaptive law based on the wheel slip dynamics. And the wheel slip controller is designed based on the estimated brake gain. The robustness of the designed controller is analyzed using Lyapunov function and the convergence of brake gain is verified. Proposed wheel slip controller is verified via CarSim simulation with two kinds of desired wheel slip ratio.

  • PDF

서울지하철의 저주파소음 특성 (Low Frequency Characteristic of Seoul Subway Noise)

  • 정성수;신수현;김호철;이우섭
    • 대한환경공학회지
    • /
    • 제27권11호
    • /
    • pp.1193-1197
    • /
    • 2005
  • 사람의 귀에 들리지 않는 초저주파음을 비롯하여 200 Hz 이하의 저주파소음은 순환기, 호흡기, 신경, 내분비 등 사람의 생리에 영향을 미치는 것으로 알려져 있다. 이에 몇몇 국가들은 나름대로 저주파소음의 측정법과 평가 기준안을 마련한 상태이다. 본 연구에서는 대중교통 수단인 서울지하철을 대상으로 객차 내와 승강장에서의 저주파소음레벨과 스펙트럼을 조사하였다. 측정결과 객차 내 소음레벨은 지하철 운행속도와 곡선구배 등에 따라 차이는 있었으나, 주파수 $1{\sim}200\;Hz$ 대역에서 $60{\sim}105\;dB$로 나타났다. 특히 8 Hz에서의 소음 피크 값은 객차의 길이에 대한 공명주파수에 해당됨을 알 수 있었다. 승강장에서의 소음은 객차 내 소음보다 상대적으로 소음레벨이 낮게 측정되었는데 이것은 차량 도착 혹은 출발 시의 속력이 운행 시의 속력보다 낮기 때문으로 판단된다. Ochiai의 소음에 의한 인체영향 연구를 고려할 때, 객차 내 소음은 주파수 $20{\sim}80\;Hz$ 구간에서 압박감을 줄 수 있기 때문에 주목할 필요가 있다.

중형 차량의 외부 유동특성에 관한 연구 (Investigation of Aerodynamic Characteristics of a Medium-Size Vehicle)

  • 이동렬
    • 동력기계공학회지
    • /
    • 제10권2호
    • /
    • pp.22-28
    • /
    • 2006
  • Computer simulation of the air flow over an automotive vehicle is now becoming a routine process in automotive industry to assess the aerodynamic characteristics of a medium-size vehicle such as $C_d\;and\;C_1$ and aslo to investigate the possibility of improving aerodynamic performance of the vehicle as a preliminary design for the production line. Mainly due to its contribution in saving time and cost in the development of new cars, computer simulation of the air flow over a vehicle is usually done well before a production car is introduced to the market and in gaining more and more attention as powerful computer resources are getting readily available nowadays. To aerodynamically design a car is mainly related with reducing a drag coefficient of car. A well designed car usually has a $C_d$ value in the range of $0.3{\sim}0.4$. It is understandable that automotive industry is rushing to reduce a drag coefficient as reducing even a small fraction of the $C_d$ value can have an enormous overall impact on many areas. Actually, the present research model was able to achieve a $C_d$ value in the range of $0.3{\sim}0.36$ for flow velocities of $60km/h{\sim}100km/h$ by strategically removing the possible factor hazardous to lower $C_d$ value. Prediction of the medium-size vehicle aerodynamics using CFD was performed when an actual car model was in the development stage and three-dimensional modeling was also performed to optimize it as the best model in terms of the best aerodynamic performance.

  • PDF

자동차 내장재의 연소 특성에 관한 연구 (A Study on the Characteristics of Combustion for Car Interior Materials)

  • 김영탁;김해림;박영주;이해평
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2008년도 추계학술논문발표회 논문집
    • /
    • pp.450-455
    • /
    • 2008
  • We have carried out the test using the cone calorimeter and the smoke density chamber to evaluate the characteristics of the combustion for the car interior materials passed horizontal burning test. We have analysed many parameters related to fire hazard. These parameters are the ignition time, the heat release rate, the maximum average rate of heat emission, the flashover propensity and specific optical density. There was a significant difference in HRR and optical smoke density. The HRR was $185{\sim}446kW/m^2$ and optical smoke density was $119{\sim}1207$. Only horizontal burning test was performed to evaluate the fire hazard for the car interior materials.

  • PDF

콘 칼로리미터를 이용한 자동차 구성 요소별 연소 특성 분석 (Combustion Characteristics of Car Components Using Cone-Calorimeter)

  • 박은영;박덕신
    • 한국대기환경학회지
    • /
    • 제25권3호
    • /
    • pp.237-247
    • /
    • 2009
  • The combustion characteristics of car components have been investigated, The combustion parameters like heat release rate, smoke production, yield of carbon dioxide and carbon monoxide and mass loss rate were analyzed by cone-calorimeter for representative samples (seat, carpet, headrest, rubber mat, dash board and electric wire) collected from a used car. The results from sample combustion showed that cover and sponge in seat more quickly ignited and flamed than other parts. The heat released from the combustion of dash board sample was 144.29$kw/m^2$ and the smoke produced by the wire combustion was 6896.4 $m^2/m^2$. The yields of carbon dioxide and carbon monoxide were in the ranges of 1.09${\sim}$2.76 kg/kg and 0.0262${\sim}$0.1008 kg/kg, respectively.

A Study on the Dynamic and Control Performance of New Type EPS systems with Two Magnetic Clutches

  • Boo, Kwang-Suck;Song, Jeong-Hoon;Lee, Jong-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1874-1879
    • /
    • 2004
  • This paper validates new type electric power steering (EPS) system which is driven by a uni-direction rotational motor and two electromagnetic clutches. The assist motor of the new type EPS produces a torque for assisting the steering in only one direction and two electromagnetic clutches transmit the assist torque to the pinion gear in either left or right direction with respect to the steering rotation. In order to evaluate the static and dynamic characteristics of the new type EPS, the EPS has been modeled by using the well known customized software such as MSC.ADAMS and MSC.CarSim. The ADAMS software has been used to investigate the static characteristics of the proposed system. ADAMS, however, can not describe dynamics of a vehicle and perform the simulation under the various road conditions. Thus the dynamic characteristics of the vehicle including the EPS are analyzed very well by using the CarSim software. A sinusoidal steering input command is applied to the propose EPS system in order to evaluate the static characteristics, while the double lane changes are applied to the vehicle with the EPS in order to evaluate the dynamic performance. Through a series of simulations, we can conclude that the propose EPS shows the stable dynamic characteristics when the rotational direction is changed.

  • PDF

상용 소프트웨어를 이용한 차량 모델 및 ABS 제어기의 성능 평가 (Validation of a Vehicle Model and an ABS Controller with a Commercial Software Program)

  • 송정훈
    • 한국자동차공학회논문집
    • /
    • 제15권5호
    • /
    • pp.180-187
    • /
    • 2007
  • This paper presents a mathematical vehicle model that is designed to analyze the dynamic performance and to develop various safety control systems. Wheel slip controllers for ABS is also formulated to improve the vehicle response and to increase the safety on slippery road. Validation of the model and controller is performed by comparison with a commercial software package, CarSim. The result shows that performances of developed vehicle model are in good accordance with those of the CarSim on various driving conditions. Developed ABS controller is applied to the vehicle model and CarSim model, and it achieves good control performance. ABS controller improves lateral stability as well as longitudinal one when a vehicle is in turning maneuver on slippery road. A driver model is also designed to control steer angle of the vehicle model. It also shows good performance because the vehicle tracks the desired lane very well.

Design criteria of wind barriers for traffic -Part 1: wind barrier performance

  • Kwon, Soon-Duck;Kim, Dong Hyawn;Lee, Seung Ho;Song, Ho Sung
    • Wind and Structures
    • /
    • 제14권1호
    • /
    • pp.55-70
    • /
    • 2011
  • This study investigates the design criteria required for wind barriers to protect vehicles running on an expressway under a high side wind. At the first stage of this study, the lateral deviations of vehicles in crosswinds were computed from the commercial software, CarSim and TruckSim, and the critical wind speeds for a car accident were then evaluated from a predefined car accident index. The critical wind speeds for driving stability were found to be 35 m/s for a small passenger car, yet 30 m/s for a truck and a bus. From the wind tunnel tests, the minimum height of a wind barrier required to reduce the wind speed by 50% was found to be 12.5% of the road width. In the case of parallel bridges, the placement of two edge wind barriers plus one wind barrier at center was recommended for a separation distance larger than 20 m (four lanes) and 10 m (six lanes) respectively, otherwise two wind barriers were recommended.