• Title/Summary/Keyword: Car-to-Car Crash

Search Result 199, Processing Time 0.023 seconds

A Study on Appropriate Breadth for U-turn Setup (U-turn 설치를 위한 적정 폭원에 관한 연구)

  • Lee, Jin-Uk;Kim, Gi-Hyeok
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.3
    • /
    • pp.39-47
    • /
    • 2009
  • Currently, the minimum breadth as a point available for U-turn setup is designated as "over 9m for one way" in the traffic safety facilities practical manuals, and vehicles allowed to make a U-turn are limited to passenger cars. However, as passenger cars have recently become larger and SUVs (Sports Utility Vehicles) are being popularized, they fail to make a U-turn in one attempt. This causes a traffic jam and a problem with traffic safety. This study proposed, compared, and tested the measured values of actual differences in the turning radius of U-turn by actual cars with estimated values by using PC-Crash, a car accident simulation program. Then, the study forecasted the turning radius of U-turns of Korean passenger cars by using PC-Crash, and proposed appropriate breadth for U-turn setup.

The Study on control factor of WorldSID 50%ile dummy injury through AE-MDB side crash test (AE-MDB 측면 충돌 시험 시 WorldSID 50%ile dummy 상해치에 대한 제어인자 연구)

  • Hongyul Sun;Pyokyong Han;Jaesu Kim;Kiseok Kim;Ilsung Yoon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.1
    • /
    • pp.5-9
    • /
    • 2014
  • Over the past ten years, since the introduction of the side crash test regulation in Europe, much research work has been performed internationally to develop new and modified test procedures to improve the level of occupant protection offered by vehicles in side crash test. This research has been co-ordinated and finally contributed to development of an AE-MDB(Advanced European Moving Deformable Barrier) and WorldSID (Worldwide Side Impact Dummy). EuroNCAP(European New Car Assessment Program) has the plan to conduct AE-MDB side crash test using WorldSID from 2015 by replacing Progressive MDB and EuroSID II. Automobile manufacturers need to respond to these changes closely. This paper is to find dominant control factor and analyze it of WorldSID 50%ile dummy injury through AE-MDB side crash test by predicting best and worst condition. And control factors will be validated within EuroNCAP regulations. This paper is analyzed by DFSS(Design for six sigma) which contains 5 control factors and is evaluated by ANOVA with the data as a result of LS-DYNA analysis correlated with crash pulse from 50 kph AE-MDB side crash test using WorldSID 50%ile dummy.

Development of Automotive Part using Tailor Welded Blanks (Tailor Welded Blanks를 이용한 자동차용 부품개발)

  • 이승희;전병희;김헌영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.40-44
    • /
    • 1998
  • In this study, the subframe of passenger car is developed by typical analysis and carsh simulations. According this results, energy absorption and barrier froce is very important to control passenger safety and deformation shape. For that purpose, it is most effective to absorb energy more tailor welded blanks(TWB) subframe than non-TWB. The subframe with TWB is simulated, in which reduced stamping parts, weight reduction and cost down.

  • PDF

Review on the Modification of Carbody Structure to meet the Collision Condition Applied for Railway Vehicles (철도차량의 충돌 조건 만족을 위한 차체 프레임 개선 사례에 대한 고찰)

  • Park, Jin-Soo;Kim, Ku-Sik
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1236-1242
    • /
    • 2010
  • Currently in design and manufacturing of railway train overseas markets, criteria for a collision condition between vehicles is noted in design specification. In the event of a train crash, it can be verified by crashworthiness analysis or an actual crash test for car's performance to keep the safety of passengers and to minimize the effect of damaged for vehicles. In this paper, it is described for carbody structure to meet the allowable condition in collision analysis through improvement of shape, position and arrangement for carbody frame. This report describes the shape of end frame for carbody structure and the results of analysis applied to actual cases for overseas.

  • PDF

Development of n Hybrid Bumper Beam Using Simulation (시뮬레이션을 이용한 하이브리드 범퍼 빔 개발)

  • Lee, J.K.;Kang, D.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.326-330
    • /
    • 2007
  • Bumper back beam is one of the essential structural components of front-end module. It should be designed to withstand a minor bump in low-speed collision, 2.5 mph crash test for example. And weight reduction is always important problem in the design of almost all the parts in car for energy saving. So, the key issues in shape design of a bumper are weight reduction and the performance in 2.5mph crash test. In this study, a light weight and high performance bumper back beam model was developed using analytical approach based on mechanics and FE simulation together.

  • PDF

Local Softening of Hot-stamped Parts using a Laser Heat Treatment (레이저 열처리를 이용한 핫스탬핑 부품의 국부 연화 기술 연구)

  • Kim, K.B.;Jung, Y.I.;Kim, T.J.
    • Transactions of Materials Processing
    • /
    • v.24 no.5
    • /
    • pp.354-360
    • /
    • 2015
  • AHSS (Advanced High Strength Steels) has been increasingly employed by global automotive OEMs in order to satisfy strengthened regulations and reduce weight for fuel efficiency. Hot stamping using boron steels in AHSS increases not only formability but also strength. The typical hot-stamped automotive part is the center pillar that is critical for vehicle side impact. However, the hot-stamped part can be risky for the passenger safety caused by brittle fracture under a vehicle collision. The high power diode laser is suitable for the heat treatment giving AHSS increased elongation that prevents brittle fracture in car crash. Therefore, local softening by laser heat treatment for energy absorption area on the hot-stamped part improves crash-worthiness.

Analysis on Motorcycle Driving Behavior (이륜자동차 주행행태 분석 연구)

  • Kim, Hyeong-Gyu;Kim, Jin-Tae;Park, Jun-Tae;Lee, Su-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.4
    • /
    • pp.7-15
    • /
    • 2011
  • Emerged in early 1990s, so called 'Quick service' industry that provides faster delivery of small parcels than regular mail service accelerated use of motorcycles. As the economic grows, use of large bicycles (more than 250CC displacement) for leisure purpose has also rapidly increased. Traffic crash data clearly shows the increasing trend in motorcycle crashes. The ratio of motorcycle involved crashes out of total has increased from 5.7% in 2005 to 8.3% in 2008, and similar trend can be found in fatalities ratio as well. In this study, we assess the level of risk when motorcycles operate on motorways by analyzing traffic rule violation ratio, lane change behaviour, driving speed behaviors of motorcycles in Uninterrupted Traffic Flow Facilities and using PC-CRASH simulation we also calculate car shock impulses occurred when an accident happens. Analysis result shows that the motorcycle is different from the car in terms of lane change timing and average speed, and also shows motorcycle drivers tends to conduct more improper driving behavior particularly when traffic is congested. The results from this study could be usefully applied when the law enforcement agent decides whether bicycles shall be allowed to use motorways. The result could be also utilized as fundamental information for further study of bicycles' driving behavior.

A Study on Crash Analysis of Vehicle and Guardrail using a LS-DYNA Program (LS-DYNA 프로그램을 이용한 차량과 가드레일의 충돌해석에 관한 연구)

  • Kwon, O-Hyun;Baek, Se-Ryong;Yoon, Jun-Kyu;Lim, Jong-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.179-186
    • /
    • 2016
  • A study is to research crash barriers for vehicles that prevent road breakaway of vehicles and protect car passengers and pedestrians as absorbing impulse. Protection performance tests on vehicle passengers were simulated by using a LS-DYNA program. Through repetitive simulation on various speed and angles, passenger protection performance according to different impact condition was contemplated. Variable setting for the simulation was calculated as the mean weight of domestic car sales. By analyzing NASS (National Automotive Sampling System) of NHTSA (National Highway Traffic Safety Administration) of the U.S., the actual speed and collision angle section of accidents were computed. As a result, we confirmed that THIV (Theoretical Head Impact Velocity) and PHD (Post-impact Head Deceleration) are increased according to the impact speed and angle. Also, when the vehicle hit the guardrail post, we could be confirmed that the passenger protection performance greatly decreased.

Crash Severity Impact of Fixed Roadside Objects using Ordered Probit Model (도로변 수직구조물 충돌사고의 심각도 영향요인에 관한 연구)

  • Lim, Joonbeom;Lee, Soobeom;Yun, Dukgeun;Park, Jaehong
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.173-180
    • /
    • 2016
  • OBJECTIVES : Fixed roadside objects are a threat to drivers when their vehicles deviate from the road. Therefore, such roadside objects need to be suitably dealt with to decrease accidents. This study determines the factors affecting the severity of accidents because of fixed roadside objects. METHODS : This study analyzed the crash severity impact of fixed roadside objects by using ordered probit regression as the analysis methodology. In this research, data from 896 traffic accidents reported in the last three years were used. These accidents consisted of sole-car accidents, fixed roadside object accidents, and lane-departure accidents on the national highway of Korea. The accident severity was classified as light injury, severe injury, and death. The factors relating to the road and the driver were collected as independent variables. RESULTS : The result of the analysis showed that the variables of the crash severity impact are the collision location (left side), gender of the driver (female), alcohol use, collision facility (roadside trees, traffic signals, telephone poles), and type of road (rural segments). Additionally, the collision location (left side), gender of the driver (female), alcohol use, collision facility (street trees, traffic signals, telephone poles), and type of road (rural segments), in order of influence, were found to be the factors affecting the crash severity in accidents due to fixed roadside objects. CONCLUSIONS : An alternative solution is urgently required to reduce the crash severity in accidents due to fixed roadside objects. Such a solution can consider the appropriate places to install breakaway devices and energy-absorbing systems.

Crash FE Analysis of Front Side Assembly for Reverse Engineering (승용차 프론트 사이드 조립체의 역설계적 유한요소 충돌해석)

  • Kim, Yong-Woo;Kim, Jeong-Ho;Jeong, Kyung-Shin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.89-98
    • /
    • 2007
  • Crashworthiness design is of special interest in automotive industry and in the transportation safety field to ensure the vehicle structural integrity and more importantly the occupant safety in the event of the crash. Front side assembly is one of the most important energy absorbing components in relating to the crashworthiness design of vehicle. The structure and shape of the front side assemblies are different depending on automakers. Thus, it is not easy to grab an insight on designer's intention when you glance at a new front side member without experiences. In this paper, we have performed the explicit nonlinear dynamic finite element analysis on the front side assembly of a passenger car to identify the mechanical roles of each part of the assembly and to enhance the absorbing energy from the viewpoint of reverse engineering.