• Title/Summary/Keyword: Car Sealing

Search Result 14, Processing Time 0.024 seconds

Car Engine Sealing Inspection System Based on Analysis of Difference Image (차영상 분석 기반의 자동차 엔진 실링상태 검사 시스템)

  • Choi, Sang-Bok;Ban, Sang-Woo;Kim, Ki-Taeg
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.3
    • /
    • pp.356-367
    • /
    • 2011
  • In this paper, we proposed a new car engine sealing inspection system based on image processing and understanding. The car engine sealing inspection plays very important role for protecting leakage caused by inappropriate sealing, which is a crucial point for productivity of car engines. The proposed inspection system has been aimed to enhance the previously proposed sealing inspection systems based on image processing, which have high computation complexity and low performance for correctly inspecting some contamination by oil with similar color with that of sealing. Moreover, the previously proposed system has a difficulty in installing the camera system on the sealing machine. The proposed system considers a difference of images before and after sealing obtained from one static camera. By utilizing a difference of images, the proposed system shows very robust performance using a proposed simple depth checking algorithm for some contamination cases by oil with similar color with that of sealing and the total inspection system is simple and cheap to implement. According to the experiments conducted in a real car product line, the proposed inspection system shows better inspection performance and needs smaller implementation cost than three other previously proposed system working in current car sealing inspection systems.

Optimal Path Planning in Redundant Sealing Robots (여유자유도 실링 로봇에서의 최적 경로 계획)

  • Sung, Young Whee;Chu, Baeksuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1911-1919
    • /
    • 2012
  • In this paper, we focus on a robotic sealing process in which three robots are used. Each robot can be considered as a 7 axis redundant robot of which the first joint is prismatic and the last 6 joints are revolute. In the factory floor, robot path planning is not a simple problem and is not automated. They need experienced operators who can operate robots by teaching and playing back fashion. However, the robotic sealing process is well organized so the relative positions and orientations of the objects in the floor and robot paths are all pre-determined. Therefore by adopting robotic theory, we can optimally plan robot pathes without using teaching. In this paper, we analyze the sealing robot by using redundant manipulator theory and propose three different methods for path planning. For sealing paths outside of a car body, we propose two methods. The first one is resolving redundancy by using pseudo-inverse of Jacobian and the second one is by using weighted pseudo-inverse of Jacobian. The former is optimal in the sense of energy and the latter is optimal in the sense of manipulability. For sealing paths inside of a car body, we must consider collision avoidance so we propose a performance index for that purpose and a method for optimizing that performance index. We show by simulation that the proposed method can avoid collision with faithfully following the given end effector path.

Car Sealer Monitoring System Using ICT Technology (ICT 기술을 융합한 자동차 실러도포 공정 모니터링 시스템)

  • Kim, Ho Yeon;Park, Jong Seop;Park, Yo Han;Cho, Jae-Soo
    • Journal of Information Technology Services
    • /
    • v.17 no.3
    • /
    • pp.53-61
    • /
    • 2018
  • In this paper, we propose a car sealing monitoring system combined with ICT Technology. The automobile sealer is an adhesive used to bond inner and outer panels of doors, hoods and trunks of an automobile body. The proposed car sealer monitoring system is a system that can accurately and automatically inspect the condition of the automobile sealer coating process in the general often factory production line where the lighting change is very severe. The sealer inspection module checks the state of the applied sealer using an area scan camera. The vision inspection algorithm is adaptive to various lighting environments to determine whether the sealer is defective or not. The captured images and test results are configured to send the task results to the task manager in real-time as a smartphone app. Vision inspection algorithms in the plant outdoors are very vulnerable to time-varying external light sources and by configuring a monitoring system based on smart mobile equipment, it is possible to perform production monitoring regardless of time and place. The applicability of this method was verified by applying it to an actual automotive sealer application process.

A study on simultaneous injection molding and two-color coating for car gas cap cover (자동차 주유구 커버에 대한 사출성형과 2색 코팅 동시 구현에 관한 연구)

  • Bae, Hyung-Sup;Park, Dong-Hyun;Kim, Boo-Kon;Seo, Chang-Ho;Heo, Won-Geun;Lee, Ho-Sang
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.32-40
    • /
    • 2021
  • Mold design for in-mold coating was carried out to achieve simultaneous injection molding and two-color coating for car gas cap cover. The developed mold includes one core and three cavities which are composed of a substrate cavity and two coating cavities. To provide a sealing edge for complete seal during the second coating, the first coated material was used at the boundary between the first coating and the second one, and injection molded substrate was used at the parting line. The materials used were PC/ABS for substrate and 2-component Polyurea for coating. Through experiments, it was found that the suggested sealing edges were effective for complete seal during the second coating. In cavity pressure traces, there were three peaks caused by mold closing, coating-material injection and cleaning-piston advancement inside the mixing head. The cavity pressure increased with decreasing coating thickness.

Development of Automotive Position Measuring Vision System

  • Lee, Chan-Ho;Oh, Jong-Kyu;Hur, Jong-Sung;Han, Chul-Hi;Kim, Young-Su;Lee, Kyu-Ho;Hur, Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1511-1515
    • /
    • 2004
  • Machine vision system plays an important role in factory automation. Its many applications are found in automobile manufacturing industries, as an eye for robotic automation system. In this paper, an automobile position measuring vision system(APMVS) applicable to manufacturing line for under body painting of a car is introduced. The APMVS measures position and orientation of the car body to be sealed or painted by the robots. The configuration of the overall robotic sealing/painting system, design and application procedure, and application examples are described.

  • PDF

Redundancy resolution method of omni-directional mobile manipulator system (전방향 이동 머니퓰레이터 시스템의 여유자유도 최적화 방법)

  • Kwon, Soon-Jae;Jeong, Jae-Ung
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.75-80
    • /
    • 2015
  • Typically, robot system configured by articulated robot manipulator with 1 DOF transfer unit is being applied in automotive manufacturing automation process. Especially, 1 DOF transfer unit is necessary to extend workspace of robot manipulator. In this configuration, because transfer unit works only one direction, robot manipulator only works in one side in case of car body painting or sealing automation process. it is necessary three robot manipulator system at least. In this paper, in order to robot manipulator works effectively in car body sealing automation application, we are suggested omni-directional manipulator system and conducted studying on redundancy resolution method to solve manipulability-optimal problem.

A study on the characteristics of high frequency road noise transmission at the rear seat of a hatch back compact car using PBNR (Power Based Noise Reduction) method (파워기반 소음감소 기법을 이용한 준중형 해치백 후석 고주파성 로드노이즈 전달특성 연구)

  • Lee, Jonghyun;Cho, Sehyun;Yi, Juwan;Lee, Chulhyun;Yang, Jungmin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.248-255
    • /
    • 2018
  • It is known that the road noise on the rear seat of a hatchback type car is worse than that of a sedan type car because of the weakness on sealing structure. Therefore, a sound sealing system and sufficient absorption/insulation performance are required. In the case of a compact segment car, however, the application of the sufficient absorption and insulation materials is limited, because of the restriction on the production cost and weight of the car. In this study, we estimate the noise transmission path on the vehicle's body structure from tires and ground using the PBNR (Power Based Noise Reduction) method which is useful in quantitative measurement. Based on these results, we suggest an alternative absorption/insulation method for the better performance of rear seat road noise reduction in a compact hatchback car.

Fabrication design of car seat using LM flame retardant fiber (LM 난연사를 이용한 자동차 시트용 직물설계)

  • Ahn, Young-Moo
    • Journal of Fashion Business
    • /
    • v.15 no.4
    • /
    • pp.110-121
    • /
    • 2011
  • As car seat is the closest part between driver and rider, the interest of the security and comfort of the seat is increasing. This research discovered the best condition for dyeing and finishing to produce a fabric for car seat and also developed the design of fabrication to give the feeling from such a finishing. The best condition of coating finishing solution is aqueous PU 65%, dye resist reagent 20%, water 12%, thicker 3%, and knife thickness 2mm, tenter temperature $170^{\circ}C$, tenter speed 35yard/min, viscosity 12,000cps and stirring time 100kg * 30min. According to the processing time of knife coating upon stirring the change of resin and the uneven of coating quantity was shown. This problems will be solved by means of automatic temperature control apparatus for resin and sealing device through a coming research.

A study on Contact force of Rubber Seal for wheel bearing (휠베어링 고무 실의 접촉력에 관한 연구)

  • Choi No Jin;Hur Young Min;Lee Kwang O;Kang Sung Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.145-151
    • /
    • 2006
  • Wheel bearing unit has been exclusively applied to car wheel supporting device. The seal for wheel bearing is required to have both high sealing effects and low reaction forces because wheel bearing are operated on adverse environmental conditions such as mud and splash water. High sealing effects are for the protection of bearing ball wear from dust influx. In order to ensure high sealing effects, it is a easiest way to increase contact force which are affected by geometric characteristics, material properties and interferences between seal and inner bearing but induces higher wear phenomena. Interferences in all variables are most important factor to determine the performance of wheel bearing. In this study, optimization of interference amount was performed with finite element analysis with commercial code ABAQUS. For the sake of finite element analysis, tensile tests of rubber material were conducted and governing equation of nonlinear behavior was achieved. Hock-up bearing was manufactured with optimized interference amount. Results of torque and mud spray tests using this bearing unit are performed. Less torque and moisture influx of bearing with optimized interference amount is evidence to validity of this study.

Study on Geometry Design of Lip-Seal for Automobile Wheel Bearing Considering Drag Torque and Sealing Performance (자동차용 횔베어링의 기동토크와 밀봉성을 고려한 립 씰의 형상 설계에 관한 연구)

  • Huh, Young-Min;Lee, Kwang-O;Sim, Tae-Yang;Kang, Sung-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.10-16
    • /
    • 2007
  • A rubber seal for wheel bearing which has been mainly applied to car wheel supporting device is required to have both high sealing performance and drag torque. Because of severe operational conditions like infiltration of mud or splashed water, the importance of rubber seal which is aimed for leakage prevention of grease and effective blocking of foreign substances has been increasing continuously. The sealing performance of this seal depends on several factors such as materials of seal, friction conditions of contact regions and geometry of seals and so on. We have focused on the effects of geometric characteristics such as the angle of main lip, interference between lip edge and inner metallic ring. In this study, the optimization of geometric variables was performed using the finite element analysis. For the sake of finite element analysis, uniaxial tensile tests were conducted and several constants for Mooney-Rivlin's equation were obtained. According to the results of this study, mock-up bearing was made. To verify this study, drag torque and mud spray test were preformed.