• Title/Summary/Keyword: Car Interior

Search Result 245, Processing Time 0.056 seconds

BOOMING INDEX DEVELOPMENT IN A PASSENGER CAR (승용차 부우밍 인덱스 개발에 관한 연구)

  • Chae, Hee-Chang;Lee, Sang-Kwon;Park, Dong-Chul;Jung, Seung-Gyoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.332.2-332
    • /
    • 2002
  • Booming sound is one of the most important interior sound of a passenger car. The conventional booming noise research was focused on the reduction of the A-weighted sound pressure level. However A-weighted sound pressure level can not give the whole story about the booming sound of a passenger car. In this paper, we employed sound metric which is the subjective parameter used in psychoacoustics. (omitted)

  • PDF

Identification of the Interior Noise Generated by SUV Axle and Modification of the Structural on Axle System for Noise Reduction (SUV용 액슬의 소음원 규명 및 소음 저감을 위한 액슬의 구조변경에 관한 연구)

  • Lee, Ju-Young;Jo, Yoon-Kyeong;Kim, Jong-Youn;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.582-592
    • /
    • 2006
  • This paper presents experimental and analytic methods to reduce interior noise generated by car axle. The test vehicle has a whine noise problem at passenger seats. In order to identify transfer path of interior axle noise, the vibration path analysis, the modal analysis and running modal analysis are systematically employed. By using these various methods, it has been founded that the interior noise generated by car axle was air borne noise. To reduce and predict axle noise, various structural modifications are performed by using FEM and BEM techniques, respectively. Through the modification of the axle structure, the air borne noise of the axle was reduced 3$\sim$4 dBA level.

A Study for Interior Noise Contribution of Support Material used in Railway Vehicle Floor (철도차량 부유상구조의 Floor support 재질이 차량 실내소음에 미치는 영향에 관한 연구)

  • Son, Byoung-Gu;Kim, Jong-Nyeun;Woo, Kwan-Je
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1776-1781
    • /
    • 2008
  • To reduce interior noise of running vehicles, a floating floor construction has been widely used in recent railway industry. Among the key factors of the floating floor design, dynamic stiffness is of most important in acoustical point of view. Sometimes hard rubber type supports have often been selected due to the other design constraints such as heavy load condition, durability of rubber element and its cost etc., even though it seems like the softer support, the better isolation of noise and vibration. In this paper two representative floor supports have been considered to evaluate their effectiveness in interior noise contribution: one is a soft rubber and another is a relatively hard one. From the measured dynamic stiffness of the specimens, equivalent stiffness of actual floating floor has been derived to use in the analytical models. Calculated air-borne and structure-borne noise insulation properties of the floating floors have been compared with experiments in prototype car. In full car model interior noise levels of running vehicles have been predicted to quantify the effectiveness of the two different floating support materials and verified through the measured inside noise levels of actual train as well. By comparison with difference of running noise levels two materials for floor support can be investigated quantitatively so that it could be applied in floating floor design.

  • PDF

KTX Interior Noise Reduction Performance Comparison Using Multichannel Active Noise Control for Each Section (다중채널 능동소음제어기법을 이용한 KTX 실내소음의 구간별 저감성능 비교)

  • Jang, Hyeon-Seok;Kim, Young-Ming;Lee, Tae-Oh;Lee, Kwon-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.179-185
    • /
    • 2012
  • Since the eco-era is getting closer, the importance of noise reducing in the passenger cars of high-speed train is very important. The active noise control is best choice to reduce low frequency noise because the passive one is too heavy for high speed trains where weight is so critical. Also ANC is able to reduce the ambient noise when the environmental-factor changes. To reduce a three-dimensional closed-space sound field like a car of a high-speed rail is hard to do using single channel ANC control system. We used multi-channel FXLMS algorithm which calculation speed is fast and the secondary path estimation is possible in order to take into account the physical delay in electro acoustic hardware control loudspeaker and power amplifier. Firstly, we have measured interior noise of KTX and estimated noise path in KTX test-bed. However there was some problem related to algorithm divergence and increasing the filter order. We have made a simulation of interior environment of KTX car by using three frequency bands of 120Hz, 280Hz, 360Hz as the most important for KTX ANC system. During this research the interior noise reduction of KTX car was made by using the multi-channel FXLMS algorithm. Reduction performance was evaluated and compared each other for open space section and tunnel section. in-situ experiment for the KTX noise reduction by proposed ANC was performed based on data obtained in simulation and they were compared for open space section and tunnel section as well.

Robust Speech Recognition in the Car Interior Environment having Car Noise and Audio Output (자동차 잡음 및 오디오 출력신호가 존재하는 자동차 실내 환경에서의 강인한 음성인식)

  • Park, Chul-Ho;Bae, Jae-Chul;Bae, Keun-Sung
    • MALSORI
    • /
    • no.62
    • /
    • pp.85-96
    • /
    • 2007
  • In this paper, we carried out recognition experiments for noisy speech having various levels of car noise and output of an audio system using the speech interface. The speech interface consists of three parts: pre-processing, acoustic echo canceller, post-processing. First, a high pass filter is employed as a pre-processing part to remove some engine noises. Then, an echo canceller implemented by using an FIR-type filter with an NLMS adaptive algorithm is used to remove the music or speech coming from the audio system in a car. As a last part, the MMSE-STSA based speech enhancement method is applied to the out of the echo canceller to remove the residual noise further. For recognition experiments, we generated test signals by adding music to the car noisy speech from Aurora 2 database. The HTK-based continuous HMM system is constructed for a recognition system. Experimental results show that the proposed speech interface is very promising for robust speech recognition in a noisy car environment.

  • PDF

Prediction of Interior Noise for Tilting Train by using Transmission Loss (투과손실을 이용한 틸팅차량의 실내소음 예측)

  • Kim, Jae-Chul
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.69-72
    • /
    • 2007
  • In this paper, we describe the analysis of interior noise for tilting train that is being developed in Korea. Tilting train is made of composite material to reduce the car body's weight and attached a self-steering system on bogie to improve curving performance. However, the acoustic performance (Transmission Loss) of such material is worse than the materials of conventional train, such as aluminum, steel and so on. Therefore, we measure the transmission loss of side wall / floor of tiling train and predict the interior noise for tilting train using its measuring results

  • PDF

External Flow and Cabin Interior Noise Analysis of Hyundai Simple Model by Coupling CAA++ and ACTRAN

  • Kim, Young Nam;Chae, Jun Hee;Jachmot, Jonathan;Jeong, Chan Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.291-291
    • /
    • 2013
  • The interior vehicle noise due to the exterior aerodynamic field is an important topic in the acoustic design of a car. The air flow detached from the A-pillar and impacting the side windows are of particular interest as they are located close to the driver / passenger and provides a lower insulation index than the trimmed car body parts. HMC is interested in the numerical prediction of this aerodynamic noise generated by the car windows with the final objective of improving the products design and reducing this noise. The methodology proposed in this paper relies on two steps: the first step involves the computation of the exterior flow and turbulence induced non-linear acoustic field using the CAA(Computational aeroacoustics) solver CAA++. The second step consists in the computation of the vibro-acoustic transmission through the side window using the finite element vibro-acoustic solver Actran. The internal air cavity including trim component are included in the simulation. In order to validate the numerical process, an experimental set-up has been created based on a generic car shape. The car body includes the windshield and two side windows. The body is made of aluminum and trimmed with porous layers. First, this paper describes the method including the CAA and the vibro-acoustic models, from the boundary conditions to the different components involved, like the windows, the trims and the car cavity is detailed. In a second step, the experimental set-up is described. In the last part, the vibration of the windshield and windows, the total wind noise level results and the relative contributions of the different windows are then presented and compared to measurements. The influence of the flow yaw angle (different wind orientation) is also assessed.

  • PDF

Comparison of Interior Noise for High Speed Trains in Korea (국내 고속철도 차량의 실내소음 특성 비교)

  • Kim, Jae-Chul;Lee, Chan-Woo;Jeong, Soon-Chul
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.90-94
    • /
    • 2007
  • There are the high-speed train of two types in Korea, KTX and KHST(Korean High Speed Train). The characteristics of interior noise appear differently because the car bodies of the trains are designed with the different materials. In this study, we measure the interior noise for KTX and KHST. The experimental results show that the interior noise of KTX is equal to KHST in open territory and tunnel and interior noise in tunnel with concreted track increase about $3{\sim}4dB(A)$ compared to tunnel with ballasted track. We also know that interior noise level of KHST is higher then KTX in range of high frequency (above 630Hz).

  • PDF

Concept Car Development using Personal Digital Design Process based on Engineering Technology (공학 기술 기반 개인 디지털 디자인 프로세스를 적용한 컨셉카 개발)

  • Maeng, Joo-Won;Cho, Chong-Du
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.9-19
    • /
    • 2010
  • Every car manufacturer desires to reduce the new car development time spent in improving the safety, NVH, lightweight, reliability and environment friendly features of the car. Other considerations such as planning, exterior and interior styling, packaging, color, and material selection increase the complexity of the car design process. This paper proposes a personal DDP (Digital Design Process) to utilize the engineering analysis and design/styling software for car design. DDP can be efficiently used by a team of car research center or a studio with small number of engineers, helping ordinary engineers becoming ambidextrous in design as well as engineering applications. The concept model starts from idea sketch, rendering, and 3D surface model with CAS (Computer Aided Styling) to the final safety estimation by using proposed DDP based on engineering technology (CAD, CAE). The concept model proposed a hydrogen fuel cell sports coupe which could be available within next 10 years. The proposed DDP can not only reduce the new car development time but also be adapted into designing of varied products such as aircraft, yacht, electrical equipment and sports gear.

Transmission Loss Estimation of HST using a Small Scale Reverberation Chamber (소형 잔향실을 이용한 동력 분산형 고속철도 차량의 투과손실 측정)

  • Kim, Tae-Min;Son, Chang-Hoon;Kim, Jeung-Tae;Kim, Jung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.302-307
    • /
    • 2010
  • Development of light-weight high speed train (HST) based on distributed motor control with the top speed of 350 km/hr has engendered a need for abatement of the interior noise of the train cabin. The development of noise abatement measures is crucial at the design stage of the train car since the noise transmission characteristics of the car structure directly influences the cabin interior noise. Since the transmission loss measurement using the entire car structure is often not feasible, especially at the initial stages of the train development, investigation of transmission characteristics using small-scale reverberation chamber can furnish useful alternative source of predicting the noise level. In the present study, white noise is generated at source and transmission loss estimated by performing measurement of a specimen in a scaled reverberation chamber. Comparison of measured values with the previously derived numerical values show good agreement in the overall trend but appreciable quantitative differences still remain.

  • PDF