• Title/Summary/Keyword: Car Fire

Search Result 161, Processing Time 0.025 seconds

A Study on Damage Assessment for Fuel Cell Facilities in Gas Stations (주유소 내 연료전지설비에 대한 사고피해예측 연구)

  • Sung Yoon Lim;Jang Choon Lee;Jae Hoon Lee;Seung Ho Choi
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.1
    • /
    • pp.71-80
    • /
    • 2023
  • Fuel cells are low-carbon power sources that can expand distributed energy system and electric vehicle charging infrastructure when installing fuel cells in gas stations. In order to ensure safety for fuel cells in gas stations, quantitative risk assessments were conducted after deriving accident scenarios based on accident data of domestic and foreign gas stations and fuel cells. It calculates the expected extent of damage from fire and explosion that can occur in reality, not the worst accident scenario, and analyzes the damage impact. The separation distance of more than 9.0 m from a dispenser, 15.5 m from a car under refueling, 4.1 m from the ventilation pipe, 1.1 m from the gas adjustment device prevent the severe damage caused by the expected accident. This study result can be used to deploy fuel cells in gas stations and establish safety measures.

Establishment of the Fire Response Guideline for Electric Vehicleson Underground Roads (지하도로 내 전기차 화재 대응지침 구축)

  • Donghyo Kang;Seong-Woo Cho;Hae Kim;Ho-In You;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.92-107
    • /
    • 2023
  • Recently, along with the continuous increase in the supply of electric vehicles, electric vehicle fire accidents are also showing a rapidly increasing trend. Electric vehicle fires last for a long time compared to fires in internal combustion engine vehicles and have problems with the risk of secondary explosions and the generation of large amounts of smoke. In particular, electric vehicle fires in underground roads, which are semi-enclosed spaces, may amplify the problems of existing electric vehicle fires. On the other hand, there are no domestic response guidelines for electric vehicle fires occurring inside underground roads. Therefore, an awareness of fire accidents was confirmed through a survey of the general public, and electric vehicle fire characteristics and primary considerations were derived from stakeholders related to electric vehicle fires in underpasses. Through this, the guidelines for responding to electric vehicle fires on underground roads were established.

A Study on the Comparative Analysis of Fire-Fighting Ambulances about the Aspects of Safety and Efficiency using the Question Investigation (설문조사를 이용한 국내 소방 구급자동차의 안전성과 효율성 측면에서의 비교 분석에 관한 연구)

  • Shin, Dong-Min;Kim, Seung-Yong;Han, Yong-Taek
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.44-53
    • /
    • 2015
  • This study is a survey research to improve the fire-fighting ambulance interior design safer and more efficient to identify the type of structure and functional problems 119 ambulance. When the paramedics and four degrees to over 755 people modify the target report and related literature on the future development of an ambulance for patient safety at the 2007 British National Patients Safety Agency (NPSA) and was used as a complementary tool. General characteristics questionnaire was composed of items for your design improvements for ambulance promote safety and efficiency. The data were collected by distributing a questionnaire e-mail or in person. The collected data were processed using the SPSS 20.0 statistical program, the general characteristics as frequency analysis, percentage, ambulance interior design improvement-related items were analyzed using the chi-square verified. As a result, this research elicited that vans converted fire ambulance cars have a problem with the narrow interior space and truck converted fire ambulance cars should be comfortable to drive in ride quality. In addition, we also found that the improvement of paramedics treatment position and the paramedic's personnel safety belt are required. Based on these results, we propose that a number of improvements are needed in the fire-fighting ambulance car.

Crash Discrimination Algorithm with Two Crash Severity Levels Based on Seat-belt Status (안전띠 착용 유무에 근거한 두 단계의 충돌 가혹도 수준을 갖는 충돌 판별 알고리즘)

  • 박서욱;이재협
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.148-156
    • /
    • 2003
  • Many car manufacturers have frequently adopted an aggressive inflator and a lower threshold speed for airbag deployment in order to meet an injury requirement for unbolted occupant at high speed crash test. Consequently, today's occupant safety restraint system has a weakness due to an airbag induced injury at low speed crash event. This paper proposes a new crash algorithm to improve the weakness by suppressing airbag deployment at low speed crash event in case of belted condition. The proposed algorithm consists of two major blocks-crash severity algorithm and deployment logic block. The first block decides crash severity with two levels by means of velocity and crash energy calculation from acceleration signal. The second block implemented by simple AND/OR logic combines the crash severity level and seat belt status information to generate firing commands for airbag and belt pretensioner. Furthermore, it can be extended to adopt additional sensor information from passenger presence detection sensor and safing sensor. A simulation using real crash data for a 1,800cc passenger vehicle has been conducted to verify the performance of proposed algorithm.

Current status of traffic accident victims who were transported by 119 ambulances in Chungcheongnam-do (충청남도 지역의 119 구급으로 이송된 교통사고 환자의 발생 특성)

  • Kim, Jin-Hyeon;Choi, Eun-Sook;Lee, Kyoung-Youl
    • The Korean Journal of Emergency Medical Services
    • /
    • v.25 no.2
    • /
    • pp.99-112
    • /
    • 2021
  • Purpose: The study aimed to analyze the current status of traffic accident victims who were transported by 119 ambulances within the administrative district of Chungnam province and provide essential data for accident prevention. Methods: The pre-hospital care records of patients who called the 119 emergency service in 2019 were obtained from the Chungnam Fire Department. Data pertaining to 13,663 traffic accident victims who were transported to hospitals were analyzed. Results: Patients in those aged ≥60 years accounted for 49.8% of the total cases. In patients aged ≥80 years(n=2,154), motor cycle accidents were highest as 28.3%. In addition, cultivator (n=135) and buggy car (n=79) accident victims were the highest in aged ≥80 years as 66.7% and 67.1%, respectively. Traffic accident victims-population ratio in Chungnam was 0.65%, wherein 2.03% included population aged ≥80 years. Conclusion: It was clear that accidents varied across administrative districts depending on the age group of population distribution. Thus, safety measures for preventing motorcycle, cultivator, and buggy car accidents are necessary for areas with many older people aged ≥80 years.

Validation of Inside Design Safety for the 119 Ambulance using a Structural Analysis (119 구급자동차의 구조해석을 통한 내부 설계 안전성 검증에 관한 연구)

  • Shin, Dong-Min;Kim, Hyung-Wook;Han, Yong-Taek
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.123-132
    • /
    • 2016
  • This study is the result of performing structural analysis in accordance with the new ambulance design of inside space using the new vehicle's bodywork. 3D design works were performed based on international standards and designed ambulance. And then it was tested by a shock of 10G to the ambulance car inside with respect to the vehicle body after that we looked into the consequences. At this time, it was carried out in consideration of its own weight and the weight of components according to the EN regulation. From the result of structural analysis, the internal frame and configured handrail in a variety of pipe did not have a relatively large stress load, but internal panel and cabinets has been interpreted to receive a large stress load at least over 50 MPa. When carried out reinforcement design in accordance with this analysis, the modification of thickness and shape could be necessary. On the basis of these findings, it is also expected that there could be a useful information to produce a more secure vehicle for paramedics and patients using a ambulance inside the vehicle.

Fundamental Study on Improvement of Fire-Resistance and Field Application of Refractory Mortar of Tunnel Structures (터널의 내화성능 향상 및 내화모르타르 현장적용을 위한 기초 연구)

  • Kim, Min-Jeong;Kim, Dong-Jin;Lee, Sang-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.537-540
    • /
    • 2008
  • Tunnel structures are constructed even longer and more extensive these days than they were in the past. Because of this reason, breaking out a large scale of fire in tunnel structures is frequently. Recently, a noticeable event is reported that the temperature of inside of tunnel rises significantly when an oil car detonated in the tunnel and it reached 1,350$^{\circ}$C. It did damage to people who used the tunnel at that time and caused many demaged parts of tunnel to recover. To improve a fire resistance of tunnel, many methods are studied focused refractory concrete and mortar. This study deals with refractory mortar and is a part of initial basic step. In this study mechanical properties are considered before fire resistance test. As result of test for examination of mechanical properties, it is considered that a consistency and strength of refractory mortar in this study are suitable to construct.

  • PDF

A Study on Explosion and Fire Risk of Lithium-Ion and Lithium-Polymer Battery (리튬이온 및 리튬폴리머 배터리의 폭발과 화재 위험성에 관한 연구)

  • Lee, Bum Joo;Choi, Gyeong Joo;Lee, Sang Ho;Jeong, Yeon Man;Park, Young;Cho, Dong Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.855-863
    • /
    • 2017
  • Because Li-ion battery and Li-Polymer battery have high-energy storage density, they are used for various electronic devices such as electronic cigarette, electronic bicycle, drone, second battery, even golf cart and electronic car. Recently, however, battery explosion is sometimes occurring on electronic devices using Li-ion battery and is becoming serious as bodily harm is breaking out due to explosion. For this, this paper described the Li-ion Battery's operating principles and verified the cause of explosion by overload tests caused by the high-energy storage density. According to the these experiments, we conducted a study to develope scanning techniques of fire and safety measures.

A Study on Effectiveness for Car-Crash Fires Prevention through a Full-length Speed Enforcement System in Highway Tunnels (고속도로 터널내 차량추돌화재사고를 방지하기 위한 구간과속단속시스템 설치에 관한 통계적 연구)

  • Lee, Young-Jae;Kim, Gab-Cheol;Park, Hyung-Joo
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.119-127
    • /
    • 2011
  • Because of most notably the increase in vehicular traffic in Korea, as measured by highway transport usage, relief is being sought by expanding the construction of highways after 1970s'. These highways have opened up over 70 % of the mountainous areas in Korea's country side which includes the construction of tunnels. Currently there are 607 tunnels installed that are being maintained and by 2015, under the next medium-term plan, Korea will build an additional 440 tunnels. In addition, the use of 1,000m double-pole tunnels is expected to increase significantly in 256 locations. There is no doubt that these tunnels will relieve traffic congestion and aid improved communications, but halfclosed underground highway tunnels in particular are required to reduce tunnel fires caused by poor vehicle maintenance, and other factors such as speeding motorists that increase the number of vehicular accidents. Double-pole tunnels in 1,000m length over require vehicle drivers to be more cautious in terms of the continuous speed limit, judged by how devastating most of car-crash fires within these tunnels can be. In order to prevent these disasters, a full-length tunnel speed enforcement system should be considered mandatorily in legal clauses.

Development of FCEV accident scenario and analysis study on dangerous distance in road tunnel (도로터널에서 수소차 사고시나리오 개발 및 위험거리에 대한 분석 연구)

  • Lee, Hu-Yeong;Ryu, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.659-677
    • /
    • 2022
  • Hydrogen is emerging as a next-generation energy source and development and supply of FCEV (hydrogen fuel cell electric vehicle) is expected to occur rapidly. Accordingly, measures to respond to hydrogen car accidents are required and researches on the safety of hydrogen cars are being actively conducted. In this study, In this study, we developed a hydrogen car accident scenarios suitable for domestic conditions for the safety evaluation of hydrogen car in road tunnels through analysis of existing experiments and research data and analyzed and presented the hazard distance according to the accident results of the hydrogen car accident scenarios. The accident results according to the hydrogen car accident scenario were classified into minor accidents, general fires, jet flames and explosions. The probability of occurrence of each accident results are predicted to be 93.06%, 1.83%, 2.25%, and 2.31%. In the case of applying the hydrogen tank specifications of FCEV developed in Korea, the hazard distance for explosion pressure (based on 16.5 kPa) is about 17.6 m, about 6 m for jet fire, up to 35 m for fireball in road tunnel with a standard cross section (72 m2).