• 제목/요약/키워드: Car Detection

검색결과 350건 처리시간 0.026초

Fault Detection System for Front-wheel Sleeving Passenger Cars

  • Kim, Hwan-Seong;You, Sam-Sang;Kim, Jin-Ho;Ha, Ju-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.45.3-45
    • /
    • 2001
  • This paper deal with a fault detection algorithm for front wheel passenger car systems by using robust $H{\infty}$ control theory. Firstly, we present a unified formulation of vehicle dynamics for front wheel car systems and transform this formulation into state space form. Also, by considering the cornering stiffness which depends on the tyre-road contact conditions, a multiplicative uncertainty for vehicle model is described. Next, the failures of sensor and actuator for vehicle system are defined in which the fault .lter is considered. From the nominal vehicle model, an augmented system includes the multiplicative uncertainty and the model of fault filter is proposed. Lastly by using $H{\infty}$ norm property the fault detect conditions are deefi.ned, and the actuator and sensor failures are detected and isolated by designing the robust $H{\infty}$ controller, respectively.

  • PDF

Application of Block On-Line Blind Source Separation to Acoustic Echo Cancellation

  • Ngoc, Duong Q.K.;Park, Chul;Nam, Seung-Hyon
    • The Journal of the Acoustical Society of Korea
    • /
    • 제27권1E호
    • /
    • pp.17-24
    • /
    • 2008
  • Blind speech separation (BSS) is well-known as a powerful technique for speech enhancement in many real world environments. In this paper, we propose a new application of BSS - acoustic echo cancellation (AEC) in a car environment. For this purpose, we develop a block-online BSS algorithm which provides robust separation than a batch version in changing environments with moving speakers. Simulation results using real world recordings show that the block-online BSS algorithm is very robust to speaker movement. When combined with AEC, simulation results using real audio recording in a car confirm the expectation that BSS improves double talk detection and echo suppression.

Implementation of Low-cost Autonomous Car for Lane Recognition and Keeping based on Deep Neural Network model

  • Song, Mi-Hwa
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권1호
    • /
    • pp.210-218
    • /
    • 2021
  • CNN (Convolutional Neural Network), a type of deep learning algorithm, is a type of artificial neural network used to analyze visual images. In deep learning, it is classified as a deep neural network and is most commonly used for visual image analysis. Accordingly, an AI autonomous driving model was constructed through real-time image processing, and a crosswalk image of a road was used as an obstacle. In this paper, we proposed a low-cost model that can actually implement autonomous driving based on the CNN model. The most well-known deep neural network technique for autonomous driving is investigated and an end-to-end model is applied. In particular, it was shown that training and self-driving on a simulated road is possible through a practical approach to realizing lane detection and keeping.

DSP를 이용한 자동차 소음에 강인한 음성인식기 구현 (Implementation of a Robust Speech Recognizer in Noisy Car Environment Using a DSP)

  • 정익주
    • 음성과학
    • /
    • 제15권2호
    • /
    • pp.67-77
    • /
    • 2008
  • In this paper, we implemented a robust speech recognizer using the TMS320VC33 DSP. For this implementation, we had built speech and noise database suitable for the recognizer using spectral subtraction method for noise removal. The recognizer has an explicit structure in aspect that a speech signal is enhanced through spectral subtraction before endpoints detection and feature extraction. This helps make the operation of the recognizer clear and build HMM models which give minimum model-mismatch. Since the recognizer was developed for the purpose of controlling car facilities and voice dialing, it has two recognition engines, speaker independent one for controlling car facilities and speaker dependent one for voice dialing. We adopted a conventional DTW algorithm for the latter and a continuous HMM for the former. Though various off-line recognition test, we made a selection of optimal conditions of several recognition parameters for a resource-limited embedded recognizer, which led to HMM models of the three mixtures per state. The car noise added speech database is enhanced using spectral subtraction before HMM parameter estimation for reducing model-mismatch caused by nonlinear distortion from spectral subtraction. The hardware module developed includes a microcontroller for host interface which processes the protocol between the DSP and a host.

  • PDF

차량 궤적 데이터를 활용한 도심부 간선도로의 돌발상황 검지 (Incident Detection for Urban Arterial Road by Adopting Car Navigation Data)

  • 김태욱;배상훈;정희진
    • 한국ITS학회 논문지
    • /
    • 제13권4호
    • /
    • pp.1-11
    • /
    • 2014
  • 도로상에서 발생하는 교통 혼잡비용은 지역 간 도로 보다는 도심부 내에서 비중 있게 발생하며, 이는 전체 혼잡비용의 약 63.39%를 차지하고 있다. 따라서, 교통혼잡비용의 절감을 위해서는 도심부의 교통 혼잡을 해소하는 것이 중요하다. 도심부의 교통 혼잡은 반복정체와 비반복정체로 구분되며, 비반복 정체를 신속하고 정확하게 검지하는 것이 교통혼잡의 해소에 있어 무엇보다 중요하다. 그러나 돌발상황 검지에 관한 연구는 대부분 연속류를 대상으로 수행되어 왔다. 도심부 단속류 도로의 경우, 신호 교차로 주정차 차량 등 다양한 변수가 존재하기 때문에 연속류에 적용되는 돌발상황 검지 알고리즘을 수정없이 적용하기에 무리가 있다. 따라서 본 연구에서는 도심부 단속류 도로를 대상으로 수집된 GPS 기반의 차량궤적 데이터에 인공신경망을 적용하여 돌발상황검지 모형을 구축하였다. 제안된 모형의 정확도 검증 결과, 돌발상황 검지율 46.15%, 오보율 25.00%가 도출되었다. 이러한 결과는 단속류를 대상으로 하는 초기 연구 결과로서 의미가 있다. 또한 내비게이션 장치와 같은 차량 궤적 데이터만을 활용하여 비반복정체를 검지 할 수 있는 가능성을 제시 했다는 것에 의미를 찾을 수 있을 것이다.

미러리스 자동차 (자동 위협 감지 시스템) (Mirrorless Car (Automatic threat detection system))

  • 장두현;손준성;윤준하;김동일;정희창
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.663-664
    • /
    • 2018
  • 근 100년간 자동차 디자인은 많은 변화가 있었지만 사이드 미러는 변하지 않았다. 이는 4차 산업 혁명이라는 시대에 뒤떨어진 고착상태이며 많은 단점을 가지고 있는 아날로그 방식이다. 이에 따라 사이드 미러를 카메라로 대체함으로써 디지털 방식으로 바꾸고 '거울'이 가지는 한계성 및 단점들을 개선하였다. 또한 연 5~10%의 연비 절감, 위협 자동 감지 등의 추가적인 여러 이점을 얻을 수 있다. 이 프로젝트에서는 호환성이 뛰어난 라즈베리파이를 메인보드로 사용하고 적외선 거리 센서, 모니터 모듈을 연결하여 상황별 자동 위협감지 및 사고 예방에 초점을 두었다.

  • PDF

Precise Detection of Car License Plates by Locating Main Characters

  • Lee, Dae-Ho;Choi, Jin-Hyuk
    • Journal of the Optical Society of Korea
    • /
    • 제14권4호
    • /
    • pp.376-382
    • /
    • 2010
  • We propose a novel method to precisely detect car license plates by locating main characters, which are printed with large font size. The regions of the main characters are directly detected without detecting the plate region boundaries, so that license regions can be detected more precisely than by other existing methods. To generate a binary image, multiple thresholds are applied, and segmented regions are selected from multiple binarized images by a criterion of size and compactness. We do not employ any character matching methods, so that many candidates for main character groups are detected; thus, we use a neural network to reject non-main character groups from the candidates. The relation of the character regions and the intensity statistics are used as the input to the neural network for classification. The detection performance has been investigated on real images captured under various illumination conditions for 1000 vehicles. 980 plates were correctly detected, and almost all non-detected plates were so stained that their characters could not be isolated for character recognition. In addition, the processing time is fast enough for a commercial automatic license plate recognition system. Therefore, the proposed method can be used for recognition systems with high performance and fast processing.

숫자 영역 탐색에 기반한 자동차 번호판 추출 (Car License Plate Extraction Based on Detection of Numeral Regions)

  • 이득용;오일석
    • 한국ITS학회 논문지
    • /
    • 제7권1호
    • /
    • pp.59-67
    • /
    • 2008
  • 이 논문은 우리나라 차량 영상에서 번호판 영역을 추출하는 알고리즘을 제안한다. 이 논문의 아이디어는 차량 영상에서 네 개의 숫자를 찾고 그 정보를 이용하여 번호판 영역을 분할하는 것이다. 이 방법으로 번호판 영역을 찾으면 네 개 숫자 영역도 더불어 얻게 되는 장점을 가진다. 첫 단계는 입력된 영상에서 적절한 크기의 연결 요소를 검출하고 이들을 군집화 한다. 둘째 군집화 된 연결요소들을 바탕으로 숫자 네 개 (4-digits)후보를 생성한다. 세 번째 단계는 4-digits후보들을 인식하여 숫자일 신뢰도를 측정한다. 마지막으로 후보 영역 중 신뢰도가 가장 높은 영역을 번호판 영역으로 추출한다 신뢰도를 얻기 위해 Perfect Metrics 분류 알고리즘을 사용하였다. 제안하는 방법을 주간 영상 4600장과 야간 영상 264장으로 테스트 한 결과 각각 97.23%와 95.45%의 검출률과 0.09%와 0.11%의 오검출률을 얻었다.

  • PDF

스펙트럼 패턴 기반의 잡음 환경에 강인한 음성의 끝점 검출 기법 (Spectral Pattern Based Robust Speech Endpoint Detection in Noisy Environments)

  • 박진수;이윤재;이인호;고한석
    • 말소리와 음성과학
    • /
    • 제1권4호
    • /
    • pp.111-117
    • /
    • 2009
  • In this paper, a new speech endpoint detector in noisy environment is proposed. According to the previous research, the energy feature in the speech region is easily distinguished from that in the speech absent region. In conventional method, the endpoint can be found by applying the edge detection filter that finds the abrupt changing point in feature domain. However, since the frame energy feature is unstable in noisy environment, the accurate edge detection is not possible. Therefore, in this paper, the novel feature extraction method based on spectrum envelop pattern is proposed. Then, the edge detection filter is applied to the proposed feature for detection of the endpoint. The experiments are performed in the car noise environment and a substantial improvement was obtained over the conventional method.

  • PDF

외부 해킹 방지를 위한 CAN 네트워크 침입 검출 알고리즘 개발 (Development of CAN network intrusion detection algorithm to prevent external hacking)

  • 김현희;신은혜;이경창;황용연
    • 한국산업융합학회 논문집
    • /
    • 제20권2호
    • /
    • pp.177-186
    • /
    • 2017
  • With the latest developments in ICT(Information Communication Technology) technology, research on Intelligent Car, Connected Car that support autonomous driving or services is actively underway. It is true that the number of inputs linked to external connections is likely to be exposed to a malicious intrusion. I studied possible security issues that may occur within the Connected Car. A variety of security issues may arise in the use of CAN, the most typical internal network of vehicles. The data can be encrypted by encrypting the entire data within the CAN network system to resolve the security issues, but can be time-consuming and time-consuming, and can cause the authentication process to be carried out in the event of a certification procedure. To resolve this problem, CAN network system can be used to authenticate nodes in the network to perform a unique authentication of nodes using nodes in the network to authenticate nodes in the nodes and By encoding the ID, identifying the identity of the data, changing the identity of the ID and decryption algorithm, and identifying the cipher and certification techniques of the external invader, the encryption and authentication techniques could be detected by detecting and verifying the external intruder. Add a monitoring node to the CAN network to resolve this. Share a unique ID that can be authenticated using the server that performs the initial certification of nodes within the network and encrypt IDs to secure data. By detecting external invaders, designing encryption and authentication techniques was designed to detect external intrusion and certification techniques, enabling them to detect external intrusions.