• Title/Summary/Keyword: Car Detection

Search Result 350, Processing Time 0.031 seconds

Car Collision Verification System for the Ubiquitous Parking Management (유비쿼터스 주차관리를 위한 차량충돌 검증시스템)

  • Mateo, Romeo Mark A.;Yang, Hyun-Ho;Lee, Jae-Wan
    • Journal of Internet Computing and Services
    • /
    • v.12 no.5
    • /
    • pp.101-111
    • /
    • 2011
  • Most researches in WSN-based parking management system used wireless sensors to monitor the events in a car parking area. However, the problem of car collisions in car parks was not discussed by previous researches. The car position details over time are vital in analyzing a collision event. This paper proposes a collision verification method to detect and to analyze the collision event in the parking area, and then notifies car owners. The detection uses the information from motion sensors for comprehensive details of position and direction of a moving car, and the verification processes an object tracking technique with a fast OBB intersection test. The performance tests show that the location technique is more accurate with additional sensors and the OBB collision test is faster compared to a normal OBB intersection test.

Driving three kinds of Course Test with RC car by Color Recognition (색깔 인식에 의한 RC car의 3가지 코스 시험 주행)

  • Lee, Jong-Min;Sohn, Young-Sun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.33-39
    • /
    • 2014
  • Automatic driving needs many functions such as the obstacle recognition, the lane recognition, and the lane change, etc. In this paper, we realized a system which automatically drove the three-kinds of vehicle driving course, to introduce and apply the concept of 'color recognition' that expands the scope of 'lane recognition' for vehicle driving. We made the reduced each course compared with RC(Radio Control) car size, and controlled the steering considering the position and the slope of the detection line and the speed. Because the RC car does not have the brake function, we consider the speed and the position of the detection line to stop the RC car.

Study for Prediction of Ride Comfort on the Curve Track by Predictive Curve Detection (사전틸팅제어의 곡선부 주행 승차감 평가 연구)

  • Ko, Tae-Hwan;Lee, Duk-Sang
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.69-74
    • /
    • 2011
  • In the curving detection method by using an accelerometer, the ride comfort in the first car is worse than one in the others due to spend the time to calculate the tilting command and drive the tilting mechanism after entering in the curve. In order to enhance the ride comfort in the first car, the preditive curve detection method which predicts the distance from a train to the starting point of curve by using the GPS, Tachometer, Ground balise and position DB for track. In this study, we predicted and evaluated the ride comfort for predictive curve detection method in transient curves according to the shape and dimension of transient curve and the various driving speed. Also, we predicted the improvement of the ride comfort for predictive curve detection method by comparing with the result of the ride comfort for predictive curve detection method and for curve detection method using an accelerometer in the short transient curve.

  • PDF

Rear Car License plate Detection of One More Cars (다수 차량의 후면 번호판 추출)

  • Kim Young-Baek;Rhee Sang-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.400-404
    • /
    • 2006
  • We suggest a method to detect rear car license plate of one more cars by using blobs. First, we try to search all of the blobs from an input image based on the difference between objects and background. Second, we obtain rectangles enclosed the blobs, and rectangle clusters by considering the properties, for example, the number, size, distance, position. Third, the cluster is verified by the Support Vector Machine. Even if we only use the adaptive binarization as the preprocessing, the detection ratio is very high.

Realtime Object Region Detection Robust to Vehicle Headlight (차량의 헤드라이트에 강인한 실시간 객체 영역 검출)

  • Yeon, Sungho;Kim, Jaemin
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.2
    • /
    • pp.138-148
    • /
    • 2015
  • Object detection methods based on background learning are widely used in video surveillance. However, when a car runs with headlights on, these methods are likely to detect the car region and the area illuminated by the headlights as one connected change region. This paper describes a method of separating the car region from the area illuminated by the headlights. First, we detect change regions with a background learning method, and extract blobs, connected components in the detected change region. If a blob is larger than the maximum object size, we extract candidate object regions from the blob by clustering the intensity histogram of the frame difference between the mean of background images and an input image. Finally, we compute the similarity between the mean of background images and the input image within each candidate region and select a candidate region with weak similarity as an object region.

Computer Vision-Based Car Accident Detection using YOLOv8 (YOLO v8을 활용한 컴퓨터 비전 기반 교통사고 탐지)

  • Marwa Chacha Andrea;Choong Kwon Lee;Yang Sok Kim;Mi Jin Noh;Sang Il Moon;Jae Ho Shin
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.91-105
    • /
    • 2024
  • Car accidents occur as a result of collisions between vehicles, leading to both vehicle damage and personal and material losses. This study developed a vehicle accident detection model based on 2,550 image frames extracted from car accident videos uploaded to YouTube, captured by CCTV. To preprocess the data, bounding boxes were annotated using roboflow.com, and the dataset was augmented by flipping images at various angles. The You Only Look Once version 8 (YOLOv8) model was employed for training, achieving an average accuracy of 0.954 in accident detection. The proposed model holds practical significance by facilitating prompt alarm transmission in emergency situations. Furthermore, it contributes to the research on developing an effective and efficient mechanism for vehicle accident detection, which can be utilized on devices like smartphones. Future research aims to refine the detection capabilities by integrating additional data including sound.

Development of Gate Operation System Based on Image Processing (영상처리에 기반한 게이트 운영시스템 개발)

  • 강대성;유영달
    • Journal of Korean Port Research
    • /
    • v.13 no.2
    • /
    • pp.303-312
    • /
    • 1999
  • The automated gate operating system is developed in this paper that controls the information of container at gate in the ACT. This system can be divided into three parts and consists of container identifier recognition car plate recognition container deformation perception. We linked each system and organized efficient gate operating system. To recognize container identifier the preprocess using LSPRD(Line Scan Proper Region Detection)is performed and the identifier is recognized by using neural network MBP When car plate is recognized only car image is extracted by using color information of car and hough transform. In the port of container deformation perception firstly background is removed by using moving window. Secondly edge is detected from the image removed characters on the surface of container deformation perception firstly background is removed by using moving window. Secondly edge is detected from the image removed characters on the surface of container. Thirdly edge is fitted into line segment so that container deformation is perceived. As a results of the experiment with this algorithm superior rate of identifier recognition is shown and the car plate recognition system and container deformation perception that are applied in real-time are developed.

  • PDF

Development of a Drowsiness Detection System using Retinex Theory and Edge Information (레티넥스 이론과 에지를 이용한 졸음 감지 시스템 개발)

  • Kang, Su Min;Huh, Kyung Moo;Lee, Seung-ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.699-704
    • /
    • 2016
  • In this paper, we propose a development method for a drowsiness detection system using retinex theory and edge information for vehicle safety. Detection of a drowsy state of a driver is very important because the drowsiness of driver is often the main cause of many car accidents. After acquiring an image of the entire face, we executed the pre-process step using the retinex theory. We then applied a technique for the detection of the white pixels using edge information. Experimental results showed that the proposed method improved the accuracy of detecting drowsiness to nearly 98%, and can be used to prevent a car accident caused by the driver's drowsiness.

Recognition of Car Manufacturers using Faster R-CNN and Perspective Transformation

  • Ansari, Israfil;Lee, Yeunghak;Jeong, Yunju;Shim, Jaechang
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.888-896
    • /
    • 2018
  • In this paper, we report detection and recognition of vehicle logo from images captured from street CCTV. Image data includes both the front and rear view of the vehicles. The proposed method is a two-step process which combines image preprocessing and faster region-based convolutional neural network (R-CNN) for logo recognition. Without preprocessing, faster R-CNN accuracy is high only if the image quality is good. The proposed system is focusing on street CCTV camera where image quality is different from a front facing camera. Using perspective transformation the top view images are transformed into front view images. In this system, the detection and accuracy are much higher as compared to the existing algorithm. As a result of the experiment, on day data the detection and recognition rate is improved by 2% and night data, detection rate improved by 14%.

A study on detection methodology of threat on cars from the viewpoint of IoT (IoT 관점에서의 차량 위협 탐지 방안)

  • Kwak, Byung Il;Han, Mi Ran;Kang, Ah Reum;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.2
    • /
    • pp.411-421
    • /
    • 2015
  • These days, a conversion of the fast-advancing ICT (Information and Communications Technologies) and the IoT (Internet of Things) has been in progress. However, these conversion Technology could lead to many of the security threat existing in the ICT environment. The security threats of car in the IoT environment could cause the property damage and casualty. There are the inadequate preparations for the car security and the difficulty of detection for the security threats by itself. In this paper, we proposed the decision-making framework for the anomaly detection and found out what are the threats of car in the IoT environment. The discrimination of the factor, path and type of threats from the attack against the car should take priority over the self-inspection and the swift handling of the attack on control system.