• 제목/요약/키워드: Capture theory

검색결과 226건 처리시간 0.027초

비국소 탄성 이론을 이용한 나노 판의 휨 및 자유진동해석 (Nonlocal elasticity theory for bending and free vibration analysis of nano plates)

  • 이원홍;한성천;박원태
    • 한국산학기술학회논문지
    • /
    • 제13권7호
    • /
    • pp.3207-3215
    • /
    • 2012
  • 본 논문에서는 3차 전단변형이론이 고려된 비국소 탄성 이론을 이용한 나노 판의 휨 및 진동에 대하여 연구하였다. 비국소 탄성 이론은 미소 규모 효과를 고려할 수 있고 3차원 전단변형이론은 나노 판의 두께방향으로의 전단 변형률과 전단응력의 곡선변화 효과를 고려할 수 있다. 이러한 두 가지 이론을 이용하여 나노 판의 처짐과 고유진동수에 미치는 비국소 이론의 효과를 제시하였다. 국소 탄성이론과의 관계를 수치해석 결과를 통하여 고찰하였다. 또한 (i) 비국소 계수, (ii) 나노 판의 적층형태, (iii) 나노 판의 보강 방향 그리고 (iv) 나노 판의 적층 수 등이 나노 판의 무차원 처짐에 미치는 효과에 대하여 관찰하였다. 본 연구의 결과를 검증하기 위해 참고문헌의 결과들과 비교 분석하였으며 해석결과는 참고문헌의 결과들과 잘 일치함을 알 수 있었다. 비국소 이론에 의한 나노 판의 처짐에 관한 연구는 향후 관련연구에 비교자료로 활용될 수 있을 것이다.

Free vibration characteristics of three-phases functionally graded sandwich plates using novel nth-order shear deformation theory

  • Pham Van Vinh;Le Quang Huy;Abdelouahed Tounsi
    • Computers and Concrete
    • /
    • 제33권1호
    • /
    • pp.27-39
    • /
    • 2024
  • In this study, the authors investigate the free vibration behavior of three-phases functionally graded sandwich plates using a novel nth-order shear deformation theory. These plates are composed of a homogeneous core and two face-sheet layers made of different functionally graded materials. This is the novel type of the sandwich structures that can be applied in many fields of mechanical engineering and industrial. The proposed theory only requires four unknown displacement functions, and the transverse displacement does not need to be separated into bending and shear parts, simplifying the theory. One noteworthy feature of the proposed theory is its ability to capture the parabolic distribution of transverse shear strains and stresses throughout the plate's thickness while ensuring zero values on the two free surfaces. By eliminating the need for shear correction factors, the theory further enhances computational efficiency. Equations of motion are established using Hamilton's principle and solved via Navier's solution. The accuracy and efficiency of the proposed theory are verified by comparing results with available solutions. The authors then use the proposed theory to investigate the free vibration characteristics of three-phases functionally graded sandwich plates, considering the effects of parameters such as aspect ratio, side-to-thickness ratio, skin-core-skin thicknesses, and power-law indexes. Through careful analysis of the free vibration behavior of three-phases functionally graded sandwich plates, the work highlighted the significant roles played by individual material ingredients in influencing their frequencies.

Several models for bending and buckling behaviors of FG-CNTRCs with piezoelectric layers including size effects

  • Heidari, Farshad;Afsari, Ahmad;Janghorban, Maziar
    • Advances in nano research
    • /
    • 제9권3호
    • /
    • pp.193-210
    • /
    • 2020
  • In this research, beside presenting real images of produced Functionally Graded Carbon Nanotube-Reinforced Composites (FG-CNTRCs) and a brief review of the synthesis method of FG-CNTRCs, static and buckling analysis of FG-CNTRC with piezoelectric layers are investigated. It is assumed that the material properties of FG-CNTRC are varied through the thickness direction using four different distributions of Carbon Nanotubes (CNTs). To capture the size effects, nonlocal elasticity theory proposed by A.C. Eringen is also adopted in our model. One of the topics in our paper is using a higher order theory with eight different displacement fields and comparing their results with each other. To solve the governing equations, an analytical method is used to find the deflections and critical buckling loads of FG-CNTRCs. To show the accuracy of present methodology, our results are compared with the results of simply supported rectangular nano plates available in the literature. In this research, the effects of aspect ratio, piezoelectric layer and nonlocal parameter are also studied. It is hoped that this work leads to more accurate models on FG-CNTRC.

Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory

  • Tohidi, H.;Hosseini-Hashemi, S.H.;Maghsoudpour, A.
    • Smart Structures and Systems
    • /
    • 제22권5호
    • /
    • pp.527-546
    • /
    • 2018
  • This article presents an analysis into the nonlinear forced vibration of a micro cylindrical shell reinforced by carbon nanotubes (CNTs) with considering agglomeration effects. The structure is subjected to magnetic field and transverse harmonic mechanical load. Mindlin theory is employed to model the structure and the strain gradient theory (SGT) is also used to capture the size effect. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite cylindrical shell and consider the CNTs agglomeration effect. The motion equations are derived using Hamilton's principle and the differential quadrature method (DQM) is employed to solve them for obtaining nonlinear frequency response of the cylindrical shells. The effect of different parameters including magnetic field, CNTs volume percent and agglomeration effect, boundary conditions, size effect and length to thickness ratio on the nonlinear forced vibrational characteristic of the of the system is studied. Numerical results indicate that by enhancing the CNTs volume percent, the amplitude of system decreases while considering the CNTs agglomeration effect has an inverse effect.

Introducing an Online Measurement System Using Item Response Theory and Computer Adaptive Testing Methods for Measuring the Physical Activity of Community-Dwelling Frail Older Adults

  • Choi, Bong-sam
    • 한국전문물리치료학회지
    • /
    • 제26권3호
    • /
    • pp.106-114
    • /
    • 2019
  • Background: It is difficult to assess whether community-dwelling frail older adults may remain pre-frail status or improve into a robust state without being directly checked by health care professionals. The health information perceived by older adults is considered to be one of best sources of potential concerns in older adult population. An online measurement system combined with item response theory (IRT) and computer adaptive testing (CAT) methods is likely to become a realistic approach to remotely monitor physical activity status of frail older adults. Objects: This article suggests an approach to provide a precise and efficient means of measuring physical activity levels of community-dwelling frail older adults. Methods: Article reviews were reviewed and summarized. Results: In comparison to the classical test theory (CTT), the IRT method is empirically aimed to focus on the psychometric properties of individual test items in lieu of the test as a whole. These properties allow creating a large item pool that can capture the broad range of physical activity levels. The CAT method administers test items by an algorithm that select items matched to the physical activity levels of the older adults. Conclusion: An online measurement system combined with these two methods would allow adequate physical activity measurement that may be useful to remotely monitor the activity level of community-dwelling frail older adults.

Vibration of a Circular plate on Pasternak foundation with variable modulus due to moving mass

  • Alile, Mohsen Rezvani;Foyouzat, Mohammad Ali;Mofid, Massood
    • Structural Engineering and Mechanics
    • /
    • 제83권6호
    • /
    • pp.757-770
    • /
    • 2022
  • In this paper, the vibration of a moderately thick plate to a moving mass is investigated. Pasternak foundation with a variable subgrade modulus is considered to tackle the shortcomings of Winkler model, and an analytical-numerical solution is proposed based on the eigenfunction expansion method. Parametric studies by using both CPT (Classical Plate Theory) and FSDT (First-Order Shear Deformation Plate Theory) are carried out, and, the differences between them are also highlighted. The obtained results reveal that utilizing FSDT without considering the rotary inertia leads to a smaller deflection in comparison with CPT pertaining to a thin plate, while it demonstrates a greater response for plates of higher thicknesses. Moreover, it is shown that CPT is unable to properly capture the variation of the plate thickness, thereby diminishing the accuracy as the thickness increases. The outcomes also indicate that the presence of a foundation contributes more to the dynamic response of thin plates in comparison to moderately thick plates. Furthermore, the findings suggest that the performance of the moving force approach for a moderately thick plate, in contrast to a thin plate, appears to be acceptable and it even provides a much better estimation in the presence of a foundation.

Bilateral Trade and Productivity Differences in a Ricardo-Cournot Model

  • Song, E. Young
    • Journal of Korea Trade
    • /
    • 제25권4호
    • /
    • pp.88-107
    • /
    • 2021
  • Purpose - Using a model that highlights Ricardian comparative advantage and Cournot competition, I derive theoretical predictions on how bilateral measures of trade intensity, specialization, and intra-industry are interrelated, and how Ricardian productivity differences affect these measures. We test the predictions using trade and production data, and confirm them. Design/methodology - A simple two-country general equilibrium model is constructed to derive theory-based bilateral indexes. We then test the relationships among them using panel data for 35 countries and 14 industries between 1996 and 2008. Findings - Bilateral trade intensity is increasing in specialization, as in the classical trade theory, and in intra-industry trade, as in the new trade theory. However, productivity differences positively affect specialization, and negatively affect intra-industry trade. These effects cancel each other; thus productivity differences have little impact on trade intensity. Originality/value - This paper provides a comprehensive conceptual framework for understanding the relationship among trade intensity, specialization, intra-industry trade, and productivity differences. We derive theory-consistent measures of specialization, intra-industry trade, and productivity differences. Moreover, we reevaluate the empirical relevance of these variables for the study of gravity equations. This paper is also an effort to capture oligopolistic competition in a general equilibrium framework, interests in which recently resurged.

Implementation of Pronoun Readings in English: A Categorial Grammar Approach.

  • Lee, Yong-Hun
    • 한국영어학회지:영어학
    • /
    • 제1권4호
    • /
    • pp.609-627
    • /
    • 2001
  • Pronouns are frequently used in English, and their resolution is important to capture meaning of sentences. This paper provides a computational implementation for pronoun readings in English, based on Chierchia's (1988) Binding Theory in Categorial Grammar. A CCG-like system is newly devised for implementing his ideas, where syntactic phenomena are represented by the functor-argument relations of categories. This relation triggers resolution algorithms, and reflexives and pronominals are resolved succinctly. In sum, this paper gives an efficient resolution algorithm for English pronouns within Categorial Grammar.

  • PDF

A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates

  • Khetir, Hafid;Bouiadjra, Mohamed Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • 제64권4호
    • /
    • pp.391-402
    • /
    • 2017
  • In this paper, a new nonlocal trigonometric shear deformation theory is proposed for thermal buckling response of nanosize functionally graded (FG) nano-plates resting on two-parameter elastic foundation under various types of thermal environments. This theory uses for the first time, undetermined integral variables and it contains only four unknowns, that is even less than the first shear deformation theory (FSDT). It is considered that the FG nano-plate is exposed to uniform, linear and sinusoidal temperature rises. Mori-Tanaka model is utilized to define the gradually variation of material properties along the plate thickness. Nonlocal elasticity theory of Eringen is employed to capture the size influences. Through the stationary potential energy the governing equations are derived for a refined nonlocal four-variable shear deformation plate theory and then solved analytically. A variety of examples is proposed to demonstrate the importance of elastic foundation parameters, various temperature fields, nonlocality, material composition, aspect and side-to-thickness ratios on critical stability temperatures of FG nano-plate.

The buckling of piezoelectric plates on pasternak elastic foundation using higher-order shear deformation plate theories

  • Ellali, Mokhtar;Amara, Khaled;Bouazza, Mokhtar;Bourada, Fouad
    • Smart Structures and Systems
    • /
    • 제21권1호
    • /
    • pp.113-122
    • /
    • 2018
  • In this article, an exact analytical solution for mechanical buckling analysis of magnetoelectroelastic plate resting on pasternak foundation is investigated based on the third-order shear deformation plate theory. The in-plane electric and magnetic fields can be ignored for plates. According to Maxwell equation and magnetoelectric boundary condition, the variation of electric and magnetic potentials along the thickness direction of the plate is determined. The von Karman model is exploited to capture the effect of nonlinearity. Navier's approach has been used to solve the governing equations for all edges simply supported boundary conditions. Numerical results reveal the effects of (i) lateral load, (ii) electric load, (iii) magnetic load and (iv) higher order shear deformation theory on the critical buckling load have been investigated. These results must be the analysis of intelligent structures constructed from magnetoelectroelastic materials.