• Title/Summary/Keyword: Capsizing accidents

Search Result 26, Processing Time 0.028 seconds

Multivariate Data Analysis on Marine Casualties (다변량해석법(多變量解析法)에 의한 해난사고(海難事故)의 분석(分析))

  • Kim, Yeong-Sik;Kim, Jeong-Chang
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.6 no.2
    • /
    • pp.190-197
    • /
    • 1994
  • In this paper, 2513 marine casualties occurred in Korean waters, during 1989-1993, were analysed by the Multivariate Data Analysis Method. The main results obtained were as follows : 1. Moat of marine casualties resulted from the human factors such as careless operation and insufficient engine maintenance. Engine trouble accounted for main patten of accidents and great number of accidents occurred in fishing vessels. 2. From the point of view of the damage of human life and properties, accidents took place in cargo ships, passenger ships and tankers were serious, but in fishing vessels, those were not so serious. 3. Grounding, collision mainly resulted from careless operation, however flooding and capsizing were much affected by bad weather and material defect.

  • PDF

Study of the Heeling Angle Prediction by using Simulation Data (시뮬레이션 데이터를 이용한 횡경사 각도 예측 방법 연구)

  • Youn, Dong-Hyup;Park, Chung-Hwan;Yim, Nam-Gyun
    • Journal of Navigation and Port Research
    • /
    • v.43 no.4
    • /
    • pp.231-236
    • /
    • 2019
  • As ships become bigger, faster, and diverse, transportation has increased the usage of marine vehicles. However, ship accidents are increasing. Ship accidents cause loss of life and property as well as environmental disasters. The occurrence of ship accidents causes enormous economic and environmental impacts. Notably, in the case of passenger ships, methods for preventing ship accidents are being discussed to avoid losing numerous human lives. The purpose of this study is to provide essential data for evacuation before reaching the dangerous time by predicting the time to reach the risk of capsizing based on the heeling angle of the passenger ship. Based on sinking accidents between 2012 and 2016, we set up specific scenarios and simulated the PRR1 data using commercial software MOSES V20. In the case of the linear equation, the simulation results showed a low error rate because the simulation data showed the linear graph. In the case of the quadratic equation, the error rate was low at the beginning but showed a high error rate at the subsequent angle.

A study on the stability of a crab trap fishing boat with water tank experiment (수조 실험에 의한 게 통발 어선의 복원성에 관한 연구)

  • Lee, A-Reum;Kang, Il-Kwon;Jo, Hyo-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.45 no.4
    • /
    • pp.267-275
    • /
    • 2009
  • According to the recent statistics of marine casualties in Korea, fishing boats are more likely to be ended in the casualties, and small fishing boats especially cause much more accidents in sinking and capsizing than any other big vessels. These casualties were mainly produced from the ignorance on the lack of own ship stability. From this view, this study aims to analyze the characteristics of stability on the crab trap fishing boat receiving transverse wave by means of carrying out the water tank test. The rolling angle of the model ship was affected largely with the displacement and the wave period of it, and the trends were shown that the magnitude of the angle was proportional to the displacement, but inversely to the wave period. And the wave height had effect on the rolling angle just in the specific range of the wave period. The force of steady wind didn't have influence on the rolling variation significantly.

A Study on the Initial Stability Calculation of Small Vessels Using Deep Learning Based on the Form Parameter Method (Form Parameter 기법을 활용한 딥러닝 기반의 소형선박 초기복원성 계산에 관한 연구)

  • Dongkeun Lee;Sang-jin Oh;Chaeog Lim;Jin-uk Kim;Sung-chul Shin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.161-172
    • /
    • 2024
  • Approximately 89% of all capsizing accidents involve small vessels, and despite their relatively high accident rates, small vessels are not subject to ship stability regulations. Small vessels, where the provision of essential basic design documents for stability calculations is omitted, face challenges in directly calculating their stability. In this study, considering that the majority of domestic coastal small vessels are of the Chine-type design, the goal is to establish the major hull form characteristic data of vessels, which can be identified from design documents such as the general arrangement drawing, as input data. Through the application of a deep learning approach, specifically a multilayer neural network structure, we aim to infer hydrostatic curves, operational draft ranges, and more. The ultimate goal is to confirm the possibility of directly calculating the initial stability of small vessels.

Safety countermeasures for the marine casualties of fishing vessels in Korea (우리나라의 어선 해양사고에 대한 안전대책)

  • Kang, Il-Kwon;Kim, Hyung-Seok;Shin, Hyeong-Il;Lee, Yoo-Won;Kim, Jeong-Chang;Jo, Hyo-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.43 no.2
    • /
    • pp.149-159
    • /
    • 2007
  • Marine casualties of fishing vessels were analyzed to reduce the sacrifice of human life using data of the Korean Maritime Safety Tribunal from 1995 to 2004 in Korea. The occurred number of fishing vessel casualties were likely to be higher portion than non-fishing vessels, but the occurring ratio of fishing vessel casualties were marked 2.96 times lower than that of non-fishing vessel casualties. The occurring ratios of bigger fishing vessel casualties were higher than smaller ones. Most marine casualties were resulted from the human factors such as poor watchkeeping, negligent action for engine and etc. The trend of marine casualties showed that the machinery damage hold the first and collision accidents took the second, but on a point of cause of them, operating errors took first and poor handling or inspection of machinery held the second place. Because those two casualties took major portion, and very important problems for safety of fishing vessels, so we ought to try to reduce the factors before everything else. In addition, since collision, sinking and capsizing in marine casualties have led to death, missing and injury of lives, it is necessary for navigation operators to take more educations and training intended to reduce the marine casualties systematically and continuously.

A Study on Angle of Heel in Turning using Ship Maneuverability lndices (선박 조종성 지수를 이용한 선회 중 횡경사에 관한 기초연구)

  • Kim, Hong-Beom;Yim, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.269-269
    • /
    • 2019
  • The ships are turning for the purpose of collision avoidence and change of course. It is possible that ships have capsizing accident when improper loading of cargo and excessive use rudder angle in turning. It is difficult for navigation officers to recognize the danger of heeling during a turn, because the dynamic state of the ship changes in real time. Thus, in this study, ship's heeling angle was predicted during turning using the maneuverability indices estimated from the ship's autopilot. The maneuverability indices estimated through the Kalman filter of Autopilot is real-time predictable. The turning radius was obtained from the estimated Index of turining ability and calculations of the heeling angle were possible in turning. It is intended to be used as a basic data on the prevention of danger heeling angle during turning.

  • PDF