• Title/Summary/Keyword: Capsize

Search Result 33, Processing Time 0.053 seconds

Theoretical Analysis at One Degree-at-Freedom Model for Rolling at Ships with Focus on Capsize (횡동요에 기인하는 전복에 대한 1-자유도계 모형의 이론해석)

  • Lee, Seung-Joan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.1 s.145
    • /
    • pp.22-31
    • /
    • 2006
  • Recent studies have shown that the short time solution of the equation of motion for the rolling of ships is important in deciding the possibility of capsize of ships due to the excessive heel. Since most of known solutions for nonlinear equations of motion are long time or steady periodic solutions, here a simple way is described to get the short time solutions of the Duffing equation, which was chosen for deriving a criterion for the capsize of the ship. With the small external rolling moment, we first assume the state of the small damping and near resonance. Then, for cases when the frequency of the external moment is higher than the resonant one, an inequality was derived as a criterion for the capsize. This gives the range of the initial condition and the magnitude of the external moment which should be avoided for a ship to be safe from capsize. Furthermore, from the linearized equation, it is also shown that a simple and self-explanatory solution can be obtained consistent with that for the case of no damping, which yields the well-known linear growth with time.

An analytic study on the hull characteristics of ship accidents at low capsizing speeds (저속으로 전복되는 선박사고의 선체 특성에 대한 해석적 연구)

  • Choi, Soon-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.235-239
    • /
    • 2016
  • The capsizing speed of an unstable vessel with a lost restoring moment can be understood as a unique response to an accident situation, and is naturally affected by such parameters as moment of inertia, metacentric height, and transverse damping coefficient of the hull in the case of free roll motion. Additionally, it is supposed that the analysis of capsize accidents can be further simplified when a vessel's leaning velocity is shown to be quite low. Therefore, capsize accidents with low leaning speeds are desirably categorized in view of rescuing strategies, as opposed to fast capsize accidents, since the attitude of the declining hull can be properly estimated, which allows rescuers to have more time for helping accident cases. This study focuses on deriving some analytical equations based on the roll decay ratio parameter, which describes how a hull under a low-speed capsize is related to the situational hull characteristics. The suggested equations are applied to a particular ship to disclose the analytical responses from the model ship. It was confirmed that the results show the general characteristics of slow capsizing ships.

Estimating Directly Damage on External Surface of Container from Parameters of Capsize-Gaussian-Function

  • Son TRAN Ngoc Hoang;KIM Hwan-Seong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.297-302
    • /
    • 2005
  • In this paper, an estimating damage on external surface of container using Capsize-Gaussian-Function (be called CGF) is presented. The estimation of the damage size can be get directly from two parameters of CGF, these are the depth and the flexure, also the direction of damage. The performance of the present method has been illustrated using an image of damage container, which had been taken from Hanjin Busan Port, after using image processing techniques to do preprocessing of the image, especially, the main used technique is Canny edge detecting that is widely used in computer vision to locate sharp intensity and to find object boundaries in the image, then correlation between the edge image from the preprocessing step and the CGF with three parameters (direction, depth, flexure), as a result, we get an image that perform damage information, and these parameters is an estimator directly to the damage.

  • PDF

Development of a Stability System to prevent a Capsize of a Small Fishing Vessel (소형어선의 전복방지화 안정장치 시스템 개발에 관한 연구)

  • Cheon, Seung-Hyeon;Jeon, Ho-Hwan;Kim, Chang-Hun;Kim, Si-Yeong;,
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.1 s.31
    • /
    • pp.130-137
    • /
    • 1999
  • The wing-flap stabilizing system attached under the hull bottom of a small fishing vessel to prevent the capsize by controlling the roll motions has been developed. This paper describes the background of the system design together with the experimental results. The effectiveness of the system is proven by the towing tank tests with a 1/4 scale model, showing that the roll motions of the model are much reduced by the active flap control in multidirectional irregular waves forward speeds.

  • PDF

Analysis the factors on the capsize of passenger vessel Sewol (여객선 세월호의 전복 요인 분석)

  • KIM, Jung-Chang;KANG, Il-Kwon;HAM, Sang-Jun;PARK, Chi-Wan
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.4
    • /
    • pp.512-519
    • /
    • 2015
  • A historical tragic disaster happened by capsizing the passenger ship Sewol at South Western Sea of Korea in 16, April 2014. The ship which left Incheon harbour to bound for Jeju port passed Maengol strait and reached to approach of Byung Pung island, and then capsized and sank with a sudden inclination to the portside in the mean time of starboard the helm. In this time, the ship which has very poor stability without sufficient ballast waters and with over loading cargo listed port side caused by the centrifugal force acting to the outside of turning. A lot of cargoes not fastened moved to the port side consequently, and the ship came to beam end to capsize and sank in the end. No crews including especially captain would offer their own duties in a such extremely urgent time, as a result, enormous number of victims broke out including a lot of student. In this report, author carried out some calculation on the factors which influenced on the stability of the ship, i.e. the ship's speed, the rudder angle, the weight of cargoes and distance of movement, the surface effect of liquid in the tank. We found out that the most causes of capsize were the poor stability with heavy cargoes and insufficient amount of ballast water against the rule, and the cargoes unfastened moved one side to add the inclination as well. Above all, the owner be blamable because of the illegally operating the ship without keeping the rule.

Stability Characteristics based on Crane Weight of Small Fishing Vessels Under Standard Loading Conditions: Investigation Report of the Capsize Accident at Goseong Port (크레인 교체에 따른 표준재화 상태에서의 소형 어선의 복원성 특성 - 고성항 전복 사고 재결서 중심 -)

  • Kang, Dae Kon;Lee, Gun Gyung;Lee, Jun Ho;Han, Seung Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.22-30
    • /
    • 2020
  • In March 2016, a 6.67-ton fishing boat capsized owing to the loss of stability during crane operations. Capsizing occurs when a boat or ship is flipped over (or turned upside down) for reason other than accidents caused by collisions, contact, stranding, fire or explosion. Over the past nine years (2010-2018), capsize accidents have accounted for 2.34 % of all marine accidents and are gradually increasing. The loss of stability from improper shipping is the main cause of most capsizes, especially for small fishing vessels weighing 10 tons. According to the Fishing Vessel Act, small fishing vessels weighing less than a ton are exempted from inspections on stability and load cranes. This study analyzes the issue cited as the reason for the capsizing of the small fishing boat in Goseong, namely, the reduction of restoring moment due to increased weight of the crane. Fishing boats with similar loading conditions were modeled on the basis of re-determination, and their stability before and after the accident was assumed. The fishing boats with heavier cranes were found to be at higher risk of capsizing owing to the reduction of the restoring moment and the angle of deck immersion. Under standard loading conditions, the stability moments of fishing vessels are lesser during fishing, compared to when they depart from or arrive at the port.

Validation of time domain seakeeping codes for a destroyer hull form operating in steep stern-quartering seas

  • Van Walree, Frans;Carette, Nicolas F.A.J.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.9-19
    • /
    • 2011
  • The paper describes the validation of two time domain methods to simulate the behaviour of a destroyer operating in steep, stern-quartering seas. The significance of deck-edge immersion and water on deck on the capsize risk is shown as well as the necessity to account for the wave disturbances caused by the ship. A method is described to reconstruct experimental wave trains and finally two deterministic validation cases are shown.

Calculation on Manoeuvring Motions of Ships in Non-uniform Flow (불균일류중(不均一流中)에서의 선박조종운동(船舶操縱運動)의 계산(計算))

  • Kyong-Ho,Son;Su-Won,Yoon
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.2
    • /
    • pp.1-11
    • /
    • 1985
  • Generally, the non-uniform flow with varying speed distribution ca be formed near narrow straits or waterways. One of the most dynamic modes of capsizing can occur as a result of manoeuvring of ships in non-uniform flow. This paper covers the investigation into the factors affecting the likelihood of server ship motions in non-uniform flow. Digital simulation of manoeuvring is carried out in order to predict conditions which could lead to serve ship motions in non-uniform flows. Hydrodynamic force derivatives of a container ship are used. Finally, possible conditions of severe ship motions are suggested and guidelines for reducing the liability to capsize are given both for the ship operator and the naval architect.

  • PDF