• Title/Summary/Keyword: Capping

Search Result 445, Processing Time 0.023 seconds

A study on the formation of cobalt silicide thin films in Co/Si systems with different capping layers (Co/Si 시스템에서 capping layer에 따른 코발트 실리사이드 박막의 형성에 관한 연구)

  • ;;;;;;;Kazuyuki Fujihara
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.335-340
    • /
    • 2000
  • We investigated the role of the capping layers in the formation of the cobalt silicide in Co/Si systems with TiN and Ti capping layers and without capping layers. The Co/Si interfacial reactions and the phase transformations by the rapid thermal annealing (RTA) processes were observed by sheet resistance measurements, XRD, SIMS and TEM analyses for the clean silicon substrate as well as for the chemically oxidized silicon substrate by $H_2SO_4$. We observed the retardation of the cobalt disilicide formation in the Co/Si system with Ti capping layers. In the case of Co/$SiO_2$/Si system, cobalt silicide was formed by the Co/Si reaction due to with the dissociation of the oxide layer by the Ti capping layers.

  • PDF

Experimental Study on the Capping Properties of Concrete Compressive Strength (콘크리트 압축강도의 캐핑 특성에 관한 실험적 연구)

  • Joung Won Seoup;Kwon Ki Joo;Noh Jea Myoung;Choi Eui Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.145-148
    • /
    • 2004
  • The purpose is to prove the newly established 'UNBONDED CAPPING' method for Concrete Strength Tests. Day by day, concrete buildings and structure became high-rising and magnificently vast scheduled, as contributed from the development of improved equipments that suitable to specific construction works and high qualitied Admixture, the qualities of the concrete was highly improved. It is very important that the concrete strength tests and evaluation should be carried out in the manner that as soon as the concrete is placed so that dismantling form works can be done in time and that may enabling reducing construction period directly related with the costs of the project. However, the conventional capping method of concrete specimen requires more manpower and consuming times, As for the Sulfur capping, there may be incurred accidential fire and generation of Gas, what is more there stands limitation in precise evaluation of strength test results because of variation in capping method results may vary in concrete strength test results. Not necessarily emphasize, the compression strength of the concrete is the most valuable basic data essential to control the qualities of the concrete and that should be carried out accurately. in this study evaluation of the compressive strength test results comparing stabilized concrete capping method for Cement Paste capping, Sulfur-paste capping ,High Gypsum capping and recently flowing the Grinding with the UNBONDED CAPPING' method to provide reliable and economical concrete strength testing.

  • PDF

The formation of thermally stable Nickle Germanide with Ti capping layer (Ti capping layer를 이용한 열적으로 안정한 NiGe 형성에 관한 연구)

  • Mun, N.J.;Choi, C.J.;Shim, K.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.138-138
    • /
    • 2008
  • Ti capping layer를 이용하여 NiGe의 열적 안정성을 향상시키는 연구를 수행하였다. N-type Ge(100) 기판에 30nm 두께의 Ni과 30nm 두께의 Ti capping layer를 E-beam evaporator를 이용하여 증착하고 $300^{\circ}C$에서 $700^{\circ}C$ 까지 30초간 $N_2$ 분위기에서 급속 열처리하여 Ni-Germanide를 형성하였다. XRD의 결과로부터 Ti capping layer 유무에 상관없이, 전 온도 범위에 걸쳐 NiGe 상이 형성된 것을 관찰할 수 있었다. 급속 열처리 온도에 따른 면저항 값을 측정한 경우, $300^{\circ}C$에서 $600^{\circ}C$까지의 열처리 온도 범위에서는 모든 시편들이 비슷한 면저항 값을 보인 반면, 열처리 온도가 $700^{\circ}C$ 이상에서는 Ti capping layer가 있는 시편이 Ti capping layer가 없는 시편보다 낮은 면저항 값을 갖는 것을 확인할 수 있었다. 이는 고온 열처리 시 Ti capping layer에 있는 Ti가 기판 방향으로 확산하여 NiGe grain boundary에 segregation 되고 그로 인하여 NiGe의 grain boundary 움직임을 억제하여 agglomeration 현상을 효과적으로 방지하였기 때문에 나타난 현상으로 사료된다.

  • PDF

Effects of Capping with Recycled Aggregates and Natural Zeolite on Inhibition of Contaminants Release from Marine Sediment (순환골재와 천연제올라이트 피복에 의한 연안퇴적물 오염물질 용출 차단 효과)

  • Kim, Young-Kee;Shin, Woo-Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.546-551
    • /
    • 2016
  • In this study, capping with recycled aggregate and natural zeolite in marine sediment was performed to investigate its inhibitory effect on pollutants released from sediment to seawater. An experiment was performed by capping with amendments for 60 days, and concentrations of organic matter (COD), nitrate, phosphate and metallic elements (Ni, Zn, Cu, Pb, Cd, As, and Cr) were measured. Two capping materials effectively suppressed pollutant release. Recycled aggregate showed better effectiveness for organic pollutant, nitrate and phosphate release. Meanwhile, natural zeolite was effective for metallic elements. As a result, recycled aggregate and natural zeolite can be considered as cost-effective/inexpensive capping material candidates. Also, the capping material can be selected according to the target pollutant.

Effects of Ti and TiN Capping Layers on Cobalt-silicided MOS Device Characteristics in Embedded DRAM and Logic

  • Kim, Jong-Chae;Kim, Yeong-Cheol;Choy, Jun-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.782-786
    • /
    • 2001
  • Cobalt silicide has been employed to Embedded DRAM (Dynamic Random Access Memory) and Logic (EDL) as contact material to improve its speed. We have investigated the influences of Ti and TiN capping layers on cobalt-silicided Complementary Metal-Oxide-Semiconductor (CMOS) device characteristics. TiN capping layer is shown to be superior to Ti capping layer with respect to high thermal stability and the current driving capability of pMOSFETs. Secondary Ion Mass Spectrometry (SIMS) showed that the Ti capping layer could not prevent the out-diffusion of boron dopants. The resulting operating current of MOS devices with Ti capping layer was degraded by more than 10%, compared with those with TiN.

  • PDF

An Experimental Study on the Effect of Capping Type of Cylindrical Concrete Specimen on Compressive Strength (원주형 콘크리트 공시체의 캡핑종류별 압축강도 영향)

  • 이상완;김수만;백승종;김광돈;이평석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.167-172
    • /
    • 2000
  • There are a variety of factors affecting measured compressive strength of hardened concrete. One of them is the end surface condition of concrete specimen. So, many capping methods have been developed for the specimen to meet the end condition requirement of ASTM C 39. A series of experimental strength comparison study was carried out using several representative capping methods, including pad capping method which is one of unbonded elastomeric capping system and was newly adopted in the ASTM standard. A comparison was also focused on their economy, convenience, harmfulness, etc.

  • PDF

Interdiffusion in Cu/Capping Layer/NiSi Contacts (Cu/Capping Layer/NiSi 접촉의 상호확산)

  • You, Jung-Joo;Bae, Kyoo-Sik
    • Korean Journal of Materials Research
    • /
    • v.17 no.9
    • /
    • pp.463-468
    • /
    • 2007
  • The interdiffusion characteristics of Cu-plug/Capping Layer/NiSi contacts were investigated. Capping layers were deposited on Ni/Si to form thermally-stable NiSi and then were utilized as diffusion barriers between Cu/NiSi contacts. Four different capping layers such as Ti, Ta, TiN, and TaN with varying thickness from 20 to 100 nm were employed. When Cu/NiSi contacts without barrier layers were furnace-annealed at $400^{\circ}C$ for 40 min., Cu diffused to the NiSi layer and formed $Cu_3Si$, and thus the NiSi layer was dissociated. But for Cu/Capping Layers/NiSi, the Cu diffusion was completely suppressed for all cases. But Ni was found to diffuse into the Cu layer to form the Cu-Ni(30at.%) solid solution, regardless of material and thickness of capping layers. The source of Ni was attributed to the unreacted Ni after the silicidation heat-treatment, and the excess Ni generated by the transformation of $Ni_2Si$ to NiSi during long furnace-annealing.

Sand Capping for Controlling Phosphorus Release from Lake Sediments (호소 저니의 인 용출 제어를 위한 모래 캡핑)

  • Kim, Geonha;Jeong, Woohyeok;Choe, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.125-130
    • /
    • 2006
  • In this research, possibility of sand capping was experimentally evaluated to control phosphorus release from lake sediment into water body. Three acrylic columns without and with 40 and 80 mm of sand capping were prepared. Phosphorus concentrations of overlying water in these columns were measured. Performances of sand capping were evaluated for 0, 40, and 80 mm of capping thickness by measuring DO, ORP, TP, and $PO_4$-P. For the case without capping, the releasing rate of total phosphorus was higher and dissolved oxygen decreased faster, comparing with those of columns with capping. Total phosphorus concentrations in overlying water were inversely proportional to capping thickness, while phosphate concentration showed no significant differences between both cases. The experiment results suggested that sand capping is effective to retard total phosphorus release from sediment.

Analysis on the Reduction of Phosphorus Release in River and Lake Sediments through Application of Capping Technology (Capping 기술을 이용한 하천 및 호소 퇴적토의 인 용출 저감 효과 분석)

  • Kim, Seog-Ku;Yun, Sang-Leen
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.781-790
    • /
    • 2014
  • Contaminants such as organic matters, nutrients and toxic chemicals in rivers and lakes with a weak flow rate are first removed from the water and accumulated in the sediments. Subsequently, they are released into the water column again, posing direct/indirect adverse effects on the water quality and aquatic ecosystems. In particular, phosphorus is known to accelerate the eutrophication phenomenon when it is released into the water column via physical disturbance and biological/chemical actions as one of important materials that determine the primary production of aquatic ecosystems and an element that is stored mainly in the sediments in the process of material circulation in the body of water. In this study, the effect on reducing phosphorus release in sediments was analyzed by applying different capping materials to lake water, where the effect of aquatic microorganisms is taken into account, and to distilled water, where the effect of microorganisms is excluded. The experimental results showed that capping with chemical materials such as Fe-gypsum and $SiO_2$-gypsum further reduced the phosphorus release by at least 40% compared to the control case. Composite materials like granule gypsum+Sand showed over 50% phosphorus release reduction effect. Therefore, it is determined that capping with chemical materials such as granule-gypsum and eco-friendly materials such as sand is effective in reducing phosphorus release. The changes in phosphorus properties in the sediments before and after capping treatment showed that gypsum input helped to change the phosphorus that is present in lake sediments into apatite-P, a stable form that makes phosphorus release difficult. Based on the above results, it is expected that the application of capping technology will contribute to improving the efficiency of reducing phosphorus release that occurs in river and lake sediments.

An Experimental Study on the Behavior of Capping Material by Sea Waves (파랑에 의한 피복재의 거동에 관한 실험적 연구)

  • Kong, Jinyoung;Kim, Youngtak;Kang, Jaemo;Lee, Jangguen
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.7
    • /
    • pp.51-58
    • /
    • 2014
  • In-situ capping is a method to stabilize contaminated sediments by isolation. Few researches on the in-situ capping have been performed, although the engineering approach is still required to prevent the release of contaminants. In this study, hydraulic model test were conducted by using a wave generator to observe the change of cap thickness which is important factor in design of capping. Sands with particle size between 0.075 to 2 mm as capping materials were used to observe the change of capping thickness by waves. The experimental results show that the surface of capping materials is similar to wave form. The more wave height increases, the more erosion of capping materials increases.