• Title/Summary/Keyword: Capillary structure transition

Search Result 4, Processing Time 0.019 seconds

Capillary Force Lithographic Patterning of a Thermoplastic Polymer Layer for Control of Azimuthal Anchoring in Liquid Crystal Alignment

  • Kim, Hak-Rin;Shin, Min-Soo;Bae, Kwang-Soo;Kim, Jae-Hoon
    • Journal of Information Display
    • /
    • v.9 no.1
    • /
    • pp.14-19
    • /
    • 2008
  • We demonstrated the capillary force lithography (CFL) method for controlling the azimuthal anchoring energy of a liquid crystal (LC) alignment layer. When a thermoplastic polymer film is heated to over the glass transition temperature, the melted polymer is filled into the mold structure by the capillary action and the aspect ratio of the pattern is determined by the dewetting time of the CFL process. Here, the proposed method showed that the azimuthal anchoring energy of the LC alignment layer could be simply controlled by the surface relief patterns which were determined by the dewetting times during the CFL patterning.

Rapid Debinding of Low Pressure Injection Molded Parts by Wicking and Subsequent Thermal Pyrolysis (위킹 및 후속 열분해 탈지에 의한 저압 사출제의 가속탈지)

  • 최인묵;김민기;김상우;이해원;송휴섭;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.6
    • /
    • pp.635-639
    • /
    • 1998
  • When the low pressure injection molded parts are debinded by wicking and subsequent thermal pyrolysis the optimum transition point from wicking to thermal pyrolysis is just after the completion of the constant wicking rate period. Even when the partially debinded parts were heated at 5$^{\circ}C$/min after reaching the 1st falling rate period the debinding defects such as distortion and cracks were not found.

  • PDF

Mechanical Properties of Cement Mortar: Development of Structure-Property Relationships

  • Ghebrab, Tewodros Tekeste;Soroushian, Parviz
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.3-10
    • /
    • 2011
  • Theoretical models for prediction of the mechanical properties of cement mortar are developed based on the morphology and interactions of cement hydration products, capillary pores and microcracks. The models account for intermolecular interactions involving the nano-scale calcium silicate hydrate (C-S-H) constituents of hydration products, and consider the effects of capillary pores as well as the microcracks within the hydrated cement paste and at the interfacial transition zone (ITZ). Cement mortar was modeled as a three-phase material composed of hydrated cement paste, fine aggregates and ITZ. The Hashin's bound model was used to predict the elastic modulus of mortar as a three-phase composite. Theoretical evaluation of fracture toughness indicated that the frictional pullout of fine aggregates makes major contribution to the fracture energy of cement mortar. Linear fracture mechanics principles were used to model the tensile strength of mortar. The predictions of theoretical models compared reasonably with empirical values.

Minimum Curing Time Prediction of Early Age Concrete to Prevent Frost Damage (동해방지를 위한 초기재령 콘크리트의 최소 양생 시간 예측)

  • Pae, Su-Won;Yi, Seong-Tae;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.27-37
    • /
    • 2007
  • The purpose of this study is to propose a method to predict the minimum curing time of early age concrete required to prevent frost damage. Tests were performed to examine major factors, which affect the compressive strength of concrete frozen at early ages and investigate the source of frost damage at early age concrete. The results from the tests showed that the loss rate of compressive strength decreases as the beginning time of frost damage was delayed and water-cement ratio was lower. In addition, the test results also showed that concrete made with type III cement was less susceptible to frost damage than concrete made with ordinary Portland cement and frost damage occurred through the formation of ice lenses. When early age concrete is being damaged by frozen, a phase transition into ice of free water presented at the capillary pores of the concrete gives a reason for the decrease of compressive strength. Accordingly, the frost resistance of fresh concrete can be determined based on the saturation degree of the capillary pores. The method to predict the minimum curing time was suggested using the concept of critical saturation degree of the capillary pores.