• Title/Summary/Keyword: Capillary pressure

Search Result 306, Processing Time 0.033 seconds

Application to Non-linear Viscoelastic Model on Capillary Extrusion of Rubber Compounds (고무복합체의 모세관 압출에서 비선형 점탄성 모델의 적용)

  • Choi, S.H.;Lyu, M.Y.;Kim, H.J.;Park, D.M.;Jun, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.209-212
    • /
    • 2007
  • Rubber compounds have high viscoelastic property. One of the viscoelastic behaviors during profile extrusion is the swelling of extrudate. In this study, die swell of rubber compounds at the capillary die have been investigated through an experiment and computer simulation. They have been performed using fluidity tester in experiment and commercial CFD code, Polyflow in computer simulation. Die swell of rubber compounds for relaxation time at several modes under same conditions with the experiment were predicted using non-linear differential viscoelastic model, Phan-Thien-Tanner (PTT) model. The simulation was analyzed compared with the experiment. Viscoelastic behaviors for pressure, velocity and shear rate distribution were analyzed at the capillary die. It is concluded that the PTT model successfully represented the amount of the optimal die swell of rubber compounds for relaxation time at different modes.

  • PDF

Investigation on the Selection of Capillary Tube for the Alternative Refrigerant R-407C

  • Kim, Chang-Nyeun;Park, Young-Moo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.1
    • /
    • pp.40-49
    • /
    • 2000
  • The capillary tube performance for R-407C is experimentally investigated. The experimental setup is a real vapor-compression refrigerating system. Mass flow rate is measured for various diameter and length while inlet pressure and degree of subcooling are changed. These data are compared with the results of a numerical model. The mass flow rate of the numerical model is about 14% less than the measured mass flow rate. It is found that mass flow rate and length for R-407C are less than those for R-22 under the same condition. Based on this experimental study and the numerical model, a set of design charts for capillary tube of R-407C is proposed.

  • PDF

Selection of Capillary Tubes for HCFC-22 Alternative Fluids (HCFC-22 대체냉매의 모세관 선정)

  • Jung, D.S.;Kim, C.B.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.435-449
    • /
    • 1995
  • In this paper, pressure drop through a capillary tube is modeled to determine the length of a capillary tube for a given set of conditions. HCFC-22 and its alternatives, HFC-134a, R407B, and R410A are used as working fluids. The conditions on which the model is tested are as follows : condensing temperature; 40.0, 45.0, 50.0, $55.0^{\circ}C$, degree of subcooling;0.0, 2.5, $5.0^{\circ}C$, capillary tube exit condition;choked flow, capillary tube diameter;1.2~2.4mm, mass flow rate;5.0~50.0g/sec. The results justify the use of Stoecker's model which yields the results very close to the values in ASHRAE handbook. While McAdams' method yields much better results than Duckler's in calculating the viscosity of the fluid in 2-phase, the friction factor suggested by Stoecker seems to be the best for capillary tubes of large diameter used in residential air conditioners. For each refrigerant, 372 data with various variables are calculated by the model. The results show that capillary tube length varies very uniformly with changes in condensing temperature and degree of subcooling. Based on this fact, regression analysis is performed to determine the dependence of mass flow rate on the length and diameter of a capillary tube, condensing temperature, and degree of subcooling. Thus determined correlation yields a mean deviation of 2.36% for 1,488 data, showing an excellent agreement.

  • PDF

A Novel Technoque for Characterization of Membranes

  • Webber, Ronald;Jena, Akshaya;Gupta, Krishna
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2001.10a
    • /
    • pp.39-50
    • /
    • 2001
  • The performance of membranes is governed their pore struture. Pore structures of porous materials can be determined by a number of techniques. However, The novel technique, capillary folw porometry has a number of advantages. In this technique, the sample is brought in contact with a liquid that fills the pores in the membrane spontaneously. Gas under pressure is used to force the liquid from the pores and increase gas flow. Gas flow rate measured as a function of gas pressure in wet and dry samples yield data on the largest pore size, the mean flow pore size, flow distribution and permeability. Pore characteristics of a number of membranes were measured using this technique. This technique did not require the use of any toxic material and the pressure employed was low. Capillary flow porometry is a suitable technique for measurement of the pore structure of many membranes.

  • PDF

Evaporative Modeling in n Thin Film Region of Micro-Channel (마이크로 채널내 박막영역에서의 증발 모델링)

  • Park, Kyoung-Woo;Noh, Kwan-Joong;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.17-24
    • /
    • 2003
  • A mathematical model of the hydrodynamic and heat transfer performances of two-phase flow (gas-liquid) in thin film region of micro channel is proposed. For the formulation of modeling, the flow of the vapor phase and the shear stress at the liquid-vapor interface are considered. In this work, disjoining pressure and capillary force which drive the liquid flow at the liquid-vapor interface in thin film region are adopted also. Using the model, the effects of the variations of channel height and heat flux on the flow and heat transfer characteristics are investigated. Results show that the influence of variation of vapor pressure on the liquid film flow is not negligible. The heat flux in thin-film region is the most important operation factor of micro cooler system.

Development of Portable Gas Chromatography / Photoionization Detector System (휴대용 기체 크로마토그래피 / 광이온화 검출기 시스템의 개발)

  • Kim, Man Gu;Sim, Ji Hui;Lee, Dong Su;Lee, Yong Geun
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.2
    • /
    • pp.151-159
    • /
    • 1994
  • The portable gas chromatography system was developed which was consisted of ambient vapor sampler(AVS), short capillary column(3 m long, 0.32 mm i.d. GC(SCCGC), photoionization detector (PID) and vacuum pump which was operated at subambient pressure. The seletion of capillary column was based on the theoretical calculation from Golay equation. The pressure ratio of column inlet and outlet appropriated between 1.03 and 1.2 in the system. The available column flow were 0.87∼4.63 ml/min at the pressure ratios. The AVS consisted of three concentric tubes and enables rapid, repetitive introduction of vapor samples directly into capillary column and showed good reproducibility. The subambient column outlet pressure with PID resulted in a significant increase in the optimum column flow, permitting rapid analysis. The baseline separation of m-xylene and o-xylene was able to within 40 second with the system. Parameters affecting the column resolving power were sampling duration, column length and diameter, and the pressure ratio. Effects of these parameters were investigated using bezene derivative compounds.

  • PDF

Identification of Cultivate Sites for Job's-tears (Coix lachrymajobi var. mayuen) using Capillary Electrophoresis (Capillary electrophoresis를 이용한 율무의 원산지 판별)

  • Rhyu, Mee-Ra;Kim, Eun-Young;Kim, Sang-Sook
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.787-791
    • /
    • 2002
  • Optimal extraction, separation, and capillary rinsing conditions for capillary electrophoresis (CE) were established to identify the cultivation site (domestic vs. foreign) of Job's-tears (Coix lachrymajobi var. mayuen) using 240 samples (domestic sample n = 121, foreign sample n = 119). Job's-tears was extracted with 30% ethanol and separated on a $50-{\mu}m-I.D.$ untreated fused-silica capillary. Optimal analytic conditions were: temperature, $45^{\circ}C$; voltage, 15 kV; detector rise time, 0.1 sec; and pressure injection, 20 sec. Separation of peak investigated using 0.1 M phosphate buffer (pH 2.5) containing 0.05% hydroxypropylmethylcellulose (P buffer) revealed the optimal separation buffer was P buffer containing 26 mM hexane sulfonic acid with 30% methanol. Under the optimal conditions established for CE, the average correct identification percentage of domestic or foreign Job's-tears was 82%.

An Assessment of Friction Factor and Viscosity Models for Predicting the Refrigerant Characteristics in Adiabatic Capillary Tubes (마찰 계수와 점성 계수 모델이 단열 모세관 유동에 미치는 영향 평가)

  • Son, Ki-Dong;Park, Sang-Goo;Jeong, Ji-Hwan;Lee, Sung-Hong;Kim, Lyun-Su
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.3
    • /
    • pp.140-148
    • /
    • 2009
  • Capillary tubes are widely used as expansion device in small refrigeration systems. The refrigerant flowing in the capillary tube experiences frictional and accelerational head losses and flashing simultaneously. In this paper flow characteristics of adiabatic capillary tubes were simulated with various friction factor models, two-phase viscosity models, and two-phase frictional multiplier models. The predicted pressure distribution and mass flow rate are compared with experimental data reported in literature. It is confirmed that the predicting accuracy with homogeneous model can be improved by employing suitable correlations of friction factor, two-phase viscosity and two-phase frictional multiplier.

Adsorbed Water in Soil a Interpreted by Its Potentials Based on Gibbs Function (Gibbs 함수의 포텐샬로 해석한 토양 흡착수)

  • 오영택;신제성
    • Journal of the Mineralogical Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.17-25
    • /
    • 1996
  • Usual experimental adsorption isotherms as a function of relative humidity were constructed from adsorbed water contents in soils, which were kept more than 2 days in vacuum desiccators with constant humidities controlled by sulfuric acids of various concentrations. From the experimental data, the adsorption surface areas were calculated on the basis of the existing adsorption theory, such as Langmuir, BET, and Aranovich. Based on the Gibbs function describing chemical potential of perfect gas, the relative humidities in the desiccators were transformed into their chemical potentials, which were assumed to be the same as the potentials of equilibratedly adsorbed water in soils. Moreover, the water potentials were again transformed into the equivalent capillary pressures, heads of capillary rise, and equivalent radius of capillary pores, on the basis of Laplace equation for surface tension pressure of spherical bubbles in water. Adsorption quantity distributions were calculated on the profile of chemical potentials of the adsorbed water, equivalent adsorption and/or capillary pressures, and equivalent capillary radius. The suggested theories were proved through its application for the prediction of temperature rise of sulfuric acid due to hydration heat. Adsorption heat calculated on the basis of the potential difference was dependant on various factors, such as surface area, equilibrium constants in Langumuir, BET, etc.

  • PDF

A NUMERICAL STUDY ON JET IMPINGEMENT OF PULSED PLASMA DISCHARGE ON A FLAT PLATE (벽면에 충돌하는 펄스 플라즈마 제트 유동특성에 대한 수치적 연구)

  • Kim, K.;Kwak, H.S.;Park, J.Y.
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.70-77
    • /
    • 2009
  • In this study, time-dependent numerical analysis was carried out to investigate the plasma jet impingement on a flat plate, and a compressible form of two-dimensional inviscid gas dynamics equations were solved using the flux corrected transport algorithm. The mathematical modeling of Joule heating in the polycarbonate capillary bore and the mass ablation from the bore wall was incorporated in the numerical analysis and the series of computation was performed for three cases depending on the distance of the opposing plate from the capillary exit. The computational results reveal that the presence of the opposing plate does not affect the flow conditions inside the capillary when compared to the case of open-air plasma discharge. In the exterior region, the flow structure shows the typical supersonic underexpanded jet which consists of the strong Mach disk in front of the opposing plate and the barrel shock at the side of the jet. It is found that the shock evolution becomes more quasi-steady when the plate distance decreases. Also, the effects of the distance between the capillary bore exit and the opposing plate on the flow conditions along the opposing plate are investigated and the pressure variation on the plate shows more complicated interaction between the plasma discharge and the opposing plate when the location of plate becomes closer to the capillary exit.