• Title/Summary/Keyword: Capacity retention rate

Search Result 157, Processing Time 0.021 seconds

Highly stabilized microstructure and excellent electrochemical performances of Ni-rich LiNi0.9Co0.05Mn0.05O2 cathode via La modification (La 개질을 통한 Ni-rich LiNi0.9Co0.05Mn0.05O2 양극재의 고도로 안정화된 미세구조 및 우수한 전기화학적 성능)

  • Seung-Hwan, Lee
    • Journal of Industrial Technology
    • /
    • v.42 no.1
    • /
    • pp.1-5
    • /
    • 2022
  • Although the mileage of electric vehicles can be increased based on the excellent energy density of the LiNi0.9Co0.05Mn0.05O2, it is known that the reason for limiting its use is the low lifespan and poor surface stability due to the structural deformation of the LiNi0.9Co0.05Mn0.05O2. To improve the structural stability of LiNi0.9Co0.05Mn0.05O2, electrochemical performance is improved by La coating on the surface. La-modified LiNi0.9Co0.05Mn0.05O2 shows an initial capacity of 210.6 mAh/g, a capacity retention rate of 89.9 % after 50 cycles, and a retention rate of 52.5% at 6.0 C. These are superior performances than the pristine sample, because the structural stability of the LiNi0.9Co0.05Mn0.05O2 cathode is improved by the La coating.

Optimization of Lithium in Li1+x[Mn0.720Ni0.175Co0.105]O2 as a Cathode Material for Lithium Ion Battery

  • Kim, Jeong-Min;Jeong, Ji-Hwa;Jin, Bong-Soo;Kim, Hyun-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.97-102
    • /
    • 2011
  • Different amounts of excess lithium in the range of x = 0~0.3 were added to $Li_{1+x}[Mn_{0.720}Ni_{0.175}Co_{0.105}]O_2$ cathode materials synthesized using the co-precipitation method to investigate its microstructure and electrochemical properties. Pure layered structure without impurities was confirmed in the XRD pattern analysis and increasing peak intensity of $Li_2MnO_3$ was observed along with the addition of over 0.2 mol Li. The initial discharge capacity of the stoichiometric composition was determined to be 246 mAh/g, while the discharge capacity of the addition of 0.1 mol Li was obtained to be 241 mAh/g, which was not significantly different from that of the stoichiometric composition. However, the discharge capacities decreased dramatically after the addition of 0.2 and 0.3 mol Li to 162 mAh/g and 146 mAh/g, respectively. In the rate capability test, the active $Li_{1+x}[Mn_{0.720}Ni_{0.175}Co_{0.105}]O_2$ cathode material of the stoichiometric composition showed a dramatic decrease in its discharge capacity with increasing C-rate, as evidenced by the result that the discharge capacity at 5C was 13% compared with 0.1C. On the other hand, the discharge capacity of compositions containing excess lithium was improved at higher current rates. The cycling test showed that the composition containing an excess of 0.1 mol Li had the most outstanding capacity retention.

Facile Synthesis of Hollow CuO/MWCNT Composites by Infiltration-Reduction-Oxidation Method as High Performance Lithium-ion Battery Anodes

  • Zheng, Gang;Li, Zhiang;Lu, Jinhua;Zhang, Jinhua;Chen, Long;Yang, Maoping
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.399-405
    • /
    • 2020
  • Hollow copper oxide/multi-walled carbon nanotubes (CuO/MWCNT) composites were fabricated via an optimized infiltration-reduction-oxidation method, which is more facile and easy to control. The crystalline structure and morphology were characterized by X-ray diffraction (XRD), and transmission electron microscopy (TEM). The as-prepared CuO/MWCNT composites deliver an initial capacity of 612.3 mAh·g-1 and with 80% capacity retention (488.2 mAh·g-1) after 100 cycles at a current rate of 0.2 A·g-1. The enhanced electrochemical performance is ascribed to the better electrical conductivity of MWCNT, the hollow structure of CuO particles, and the flexible structure of the CuO/MWCNT composites.

Synthesis of orthorhombic $LiMnO_2$ and its electrochemical properties

  • Kim, Jung-Min;Chung, Hoon-Taek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.2
    • /
    • pp.51-56
    • /
    • 2005
  • We prepared orthorhombic $LiMnO_2$ by emulsion drying method. The thermo-gravimetric measurement and X-ray diffraction studies indicated that the orthorhombic $LiMnO_2$ phase was formed above $800^{\circ}C$ by oxygen evaporation process from $LiMn_2O_4$ and $Li_2MnO_3$. In this process, we could control the ordering of $LiMnO_2$ with heating rate. It was observed that electrochemical properties depended on the ordering of this material; the ordered one exhibited good capacity retention, whereas the disordered one suffered capacity fading upon cycling, especially in the 3 V region. Transmission electron microscopic (TEM) study showed that this difference is related with difference in the stress relieving effects in the samples.

Effect of Calcination Temperature on the Structure and Electrochemical Performance of LiMn1.5Ni0.5O4 Cathode Materials

  • Ju, Seo Hee;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.59-62
    • /
    • 2013
  • Spinel $LiMn_{1.5}Ni_{0.5}O_4$ cathode powders with different morphologies were synthesized by a co-precipitation method using oxalic acid. The calcination temperature affected the morphologies, crystalline structure and electrochemical properties of the $LiMn_{1.5}Ni_{0.5}O_4$ powders. The $LiMn_{1.5}Ni_{0.5}O_4$ powders obtained at a calcination temperature of $850^{\circ}C$ exhibited the highest initial discharge capacity with good capacity retention and high rate capability.

Electrochemical Characteristics of Lithium Ion Battery Anode Materials of Graphite/SiO2 (리튬이차전지 음극재로서 Graphite/SiO2 합성물의 전기화학적 특성)

  • Ko, Hyoung Shin;Choi, Jeong Eun;Lee, Jong Dae
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.592-597
    • /
    • 2014
  • The graphite/$SiO_2$ composites as anode materials for lithium-ion batteries were prepared by sol-gel method to improve the graphite's electrochemical characteristics. The prepared graphite/$SiO_2$ composites were analysed by XRD, FE-SEM and EDX. The graphite surface modified by silicon dioxide showed several advantages to stabilize SEI layer. The electrochemical characteristics were investigated for lithium ion battery using graphite/$SiO_2$ as the working electrode and Li metal as the counter electrode. Electrochemical behaviors using organic electrolytes ($LiPF_6$, EC/DMC) were characterized by charge/discharge, cycle, cyclic voltammetry and impedance tests. The lithium ion battery using graphite/$SiO_2$ electrodes had better capacity than that of using graphite electrodes and was able to deliver a discharge capacity with 475 mAh/g at a rate of 0.1 C. Also, the capacity retention ratio of the modified graphite reaches 99% at a rate of 0.8 C.

Electrochemical Performances of Petroleum Pitch Coated Si/C Fiber Using Electrospinning (전기방사를 이용한 석유계 피치가 코팅된 Si/C Fiber의 전기화학적 성능)

  • Youn, Jae Woong;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.439-445
    • /
    • 2022
  • In this study, Silicon and petroleum pitch were coated on the surface of Si/C fiber manufactured using electrospinning to improve the electrochemical performances. SiO2/PAN fiber was prepared by electrospinning with TEOS and PAN at various ratios dissolved in DMF. The characteristics of carbonization, reduction, and pitch coating processes were investigated for the optimal process of the pitch coated Si/C fiber anode composite. Anode composite prepared with TEOS/PAN = 4/6 (CR-46) after carbonization and reduction process has a capacity of 657 mAh/g. To improve capacity and stability, Si powder and PFO pitch were coated at the surface of CR-46. When the pitch composition was fixed at 10 wt%, it was found that the capacity increased as the weight ratio of silicon increased, but the stability decreased. The pitch coated Si/C fiber composite with 10 wt% silicon has high capacity of 982.4 mAh/g and capacity retention of 86.1%. In the test to evaluate rate performance, the rate capability was 80.2% (5C/0.1C).

Estiation of Effective Rainall for Daily Streamfiow (장기유출 해석을 위한 유효우량 추정)

  • 김태철;안병기;박승기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.2
    • /
    • pp.116-124
    • /
    • 1989
  • Based on the theory of runoff equation proposed by SCS, the actual storage capacity(Sa) as a modified retention paramater was introduced to estimate the effective rainfall for the daily streamfiow analysis. During a storm, the actual storage capacity is limited by either soil water storage or infiltration rate as precipitation increases. Therefore, it was assumed that Sa is dependent on the baseflow before storm runoff(Qb) corresponding to soil water storage and the total amount of precipitation(P) corresponding to infiltration rate of a watershed. Effective rainfalls (Direct run-offs) estimate4 from SCS equation using Sa were compared with observed effective rainfalls at 10 watersheds in Geum river watershed boundary. 1. Regression equation for Sa was supposed Sa=Co+C$_1$XP+C$_2$X Qb Regression coefficients were highly significant at the level of 0. 01 and R$^2$ were 0.57 to 0.73. 2. The adjustment of coefficient of initial abstraction was made according to the storm size. It was adjusted to 025 for 30mm or less, 0.23 for 30 to 80mm, 0.20 for 80 to 200mm, and 0.1 for 200mm or more. 3. Regression equations between estimated and observed effective rainfall showed that slopes were 0.857 to 1.029 and R$^2$ were 0.779 to 0.989,

  • PDF

Using Carboxylmethylated Cellulose as Water-Borne Binder to Enhance the Electrochemical Properties of Li4Ti5O12-Based Anodes

  • Liu, Lili;Cheng, Chongling;Liu, Hongjiang;Shi, Liyi;Wang, Dayang
    • Journal of Powder Materials
    • /
    • v.22 no.5
    • /
    • pp.315-320
    • /
    • 2015
  • The present work reports a systematic study of using carboxymethylated cellulose (CMC) as water-borne binder to produce $Li_4Ti_5O_{12}$-based anodes for manufacture of high rate performance lithium ion batteries. When the LTO-to-CB-to-CMC mass ratio is carefully optimized to be 8:1:0.57, the special capacity of the resulting electrodes is $144mAh{\cdot}g^{-1}$ at 10 C and their capacity retention was 97.7% after 1000 cycles at 1 C and 98.5% after 500 cycles at 5 C, respectively. This rate performance is comparable or even better than that of the electrolytes produced using conventional, organic, polyvinylidene fluoride binder.

A Surfactant-based Method for Carbon Coating of LiNi0.8Co0.15Al0.05O2 Cathode in Li Ion Batteries

  • Chung, Young-Min;Ryu, Seong-Hyeon;Ju, Jeong-Hun;Bak, Yu-Rim;Hwang, Moon-Jin;Kim, Ki-Won;Cho, Kwon-Koo;Ryu, Kwang-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2304-2308
    • /
    • 2010
  • A $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ (LNCAO/C) active material composite cathode was coated with carbon. The conductive carbon coating was obtained by addition of surfactant during synthesis. The addition of surfactant led to the formation of an amorphous carbon coating layer on the pristine LNCAO surface. The layer of carbon coating was clearly detected by FE-TEM analysis. In electrochemical performance, although the LNCAO/C showed similar capacity at low C-rate conditions, the rate capability was improved by the form of the carbon coating at high current discharge state. After 40 cycles of charge-discharge processes, the capacity retention of LNCAO/C was better than that of LNCAO. The carbon coating is effectively protected the surface structure of the pristine LNCAO during Li insertion-extraction.