• Title/Summary/Keyword: Capacity retention rate

Search Result 160, Processing Time 0.024 seconds

Electrochemical Performance of Pitch coated Nano Silicon Sheets / Graphite Composite as Anode Material (피치로 코팅된 Nano Silicon Sheets/Graphite 음극복합소재의 전기화학적 특성)

  • Lee, Tae Heon;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.487-492
    • /
    • 2021
  • In this study, the electrochemical properties of pitch coated silicon sheets/graphite anode materials were investigated. Using NaCl as a template, silicon sheets were prepared through the stöber method and the magnesiothermic reduction methode. In order to synthesize the anode composite, the silicon sheets and graphite were combined with SDBS. The pitch coated silicon sheets/graphite was synthesized using THF as a solvent for the anode material composite. The physical properties of the prepared anode composites were analysed by XRD, SEM, EDS and TGA. The electrochemical performances of the prepared anode composites were performed by the current charge/discharge, rate performance, cyclic voltammetry and EIS tests in the electrolyte LiPF6 dissolved solvents (EC:DMC:EMC=1:1:1 vol%). As the silicon composition of silicon sheets/graphite composite material increased, the discharge capacity also increased, but the cycle stability tended to decrease. The anode material of pitch coated silicon sheets/graphite composite (silicon sheets:graphite=3:7 weight ratio) showed the initial discharge capacity of 1228.8 mAh/g and the capacity retention ratio of 77% after 50 cycles. From these results, it was found that the cycle stability of pitch coated silicon sheets/graphite was improved.

Deep Learning-Based Assessment of Functional Liver Capacity Using Gadoxetic Acid-Enhanced Hepatobiliary Phase MRI

  • Hyo Jung Park;Jee Seok Yoon;Seung Soo Lee;Heung-Il Suk;Bumwoo Park;Yu Sub Sung;Seung Baek Hong;Hwaseong Ryu
    • Korean Journal of Radiology
    • /
    • v.23 no.7
    • /
    • pp.720-731
    • /
    • 2022
  • Objective: We aimed to develop and test a deep learning algorithm (DLA) for fully automated measurement of the volume and signal intensity (SI) of the liver and spleen using gadoxetic acid-enhanced hepatobiliary phase (HBP)-magnetic resonance imaging (MRI) and to evaluate the clinical utility of DLA-assisted assessment of functional liver capacity. Materials and Methods: The DLA was developed using HBP-MRI data from 1014 patients. Using an independent test dataset (110 internal and 90 external MRI data), the segmentation performance of the DLA was measured using the Dice similarity score (DSS), and the agreement between the DLA and the ground truth for the volume and SI measurements was assessed with a Bland-Altman 95% limit of agreement (LOA). In 276 separate patients (male:female, 191:85; mean age ± standard deviation, 40 ± 15 years) who underwent hepatic resection, we evaluated the correlations between various DLA-based MRI indices, including liver volume normalized by body surface area (LVBSA), liver-to-spleen SI ratio (LSSR), MRI parameter-adjusted LSSR (aLSSR), LSSR × LVBSA, and aLSSR × LVBSA, and the indocyanine green retention rate at 15 minutes (ICG-R15), and determined the diagnostic performance of the DLA-based MRI indices to detect ICG-R15 ≥ 20%. Results: In the test dataset, the mean DSS was 0.977 for liver segmentation and 0.946 for spleen segmentation. The Bland-Altman 95% LOAs were 0.08% ± 3.70% for the liver volume, 0.20% ± 7.89% for the spleen volume, -0.02% ± 1.28% for the liver SI, and -0.01% ± 1.70% for the spleen SI. Among DLA-based MRI indices, aLSSR × LVBSA showed the strongest correlation with ICG-R15 (r = -0.54, p < 0.001), with area under receiver operating characteristic curve of 0.932 (95% confidence interval, 0.895-0.959) to diagnose ICG-R15 ≥ 20%. Conclusion: Our DLA can accurately measure the volume and SI of the liver and spleen and may be useful for assessing functional liver capacity using gadoxetic acid-enhanced HBP-MRI.

Electrochemical Characteristics of 2-Dimensional Titanium Carbide(MXene)/Silicon Anode Composite Prepared by Electrostatic Self-assembly (정전기적 자가결합법으로 제조된 2차원 티타늄 카바이드(MXene)/실리콘 음극 복합소재의 전기화학적 특성)

  • Dong Min Kim;Jong Dae Lee
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.262-268
    • /
    • 2024
  • In this study, the MXene/Si composite was prepared by electrostacic assembly with 2-dimensional structured titanium carbide (MXene) and nano silicon for anode material of high-performance lithium-ion battery. Ti3C2Tx MXene was synthesized by etching the Ti3AlC2 MAX with LiF/HCl, and the surface of nano silicon was charged to positively using CTAB (Cetyltrimethylammonium bromide). The MXene/Si anode composite was successfully manufactured by simple mixing process of synthesized MXene and charged silicon. The physical and electrochemical properties of prepared composite were investigated with MXene-silicon composition ratio, and the surface of electrode after cycles was analyzed to evaluate stability of the electrode. The MXene/Si composites demonstrated high initial discharge capacities of 1962.9, 2395.2 and 2504.3 mAh/g as the silicon composition ratio increased to 2, 3 and 4 compared to MXene, respectively. MXene/Si-4, which is MXene and silicon ratio with 1 : 4, exhibited 1387.5 mAh/g of reversible capacity, 74.5% of capacity retention at 100 cycles and high capacity of 700.5 mAh/g at high rate of 4.0 C. As the results, the MXene/Si composite prepared by electrostatic-assenbly could be applied to anode materials for high-performance LIBs.

Impact of Application Rate of Non-ionic Surfactant Mixture on Initial Wetting and Water Movement in Root Media and Growth of Hot Pepper Plug Seedlings (비이온계 계면활성제 혼합물의 처리농도가 상토의 수분 보유 및 고추 플러그묘의 생장에 미치는 영향)

  • Choi, Jong-Myung;Moon, Byung-Woo
    • Horticultural Science & Technology
    • /
    • v.29 no.1
    • /
    • pp.16-22
    • /
    • 2011
  • In developing soil wetting agent using polyoxyethylene nonylphenyl ether (PNE) and polyoxyethylene castor oil (1:1; v/v), the effect of application rates on changes in concentration of PNE, initial wetting of peatmoss + perlite (7:3) medium, and growth of hot pepper (Capsicum annuum L. 'Knockwang') plug seedlings were investigated. The elevation of application rates of wetting agent increased the amount of water retained by the root media. The treatment of 2.5 $mL{\cdot}L^{-1}$ showed similar water retention to + control ($AquaGro^L$ 3.0 $mL{\cdot}L^{-1}$). Most of the liquid wetting agent (LWA) incorporated during the medium formulation leached out in the first and second irrigation, then it decreased gradually until 10 times in irrigation. In investigation of the influence of LWA on position of water infiltrating into root media, the vertical water movements in treatments of 0.5, 1.0, and 1.5 $mL{\cdot}L^{-1}$ were much faster than those in 0.0 $mL{\cdot}L^{-1}$ (-control), but relative speed of water movement decreased by the elevation in application rate of LWA to 2.0 or 2.5 $mL{\cdot}L^{-1}$. The evaporative water loss of root media that to contained various rate of LWA and irrigated to reach container capacity was the fastest in -control among the treatments and it delayed as the application rate of LWA was elevated. The plant height of 22.2 cm in 0.5 $mL{\cdot}L^{-1}$ and stem diameter of 3.26 mm in 1.0 $mL{\cdot}L^{-1}$ were the highest among the treatments tested. The treatment of 1.0 $mL{\cdot}L^{-1}$ also had the heaviest fresh and dry weights such among treatments tested as 3.08 g and 0.861 g per plant, respectively. The elevated application rate over than 1.5 $mL{\cdot}L^{-1}$ resulted in decreased seedling growth. The results mentioned above indicate that optimum application rate of LWA is 1.0 $mL{\cdot}L^{-1}$.

Effect of an Endoplasmic Reticulum Retention Signal Tagged to Human Anti-Rabies mAb SO57 on Its Expression in Arabidopsis and Plant Growth

  • Song, Ilchan;Lee, Young Koung;Kim, Jin Wook;Lee, Seung-Won;Park, Se Ra;Lee, Hae Kyung;Oh, Soyeon;Ko, Kinarm;Kim, Mi Kyung;Park, Soon Ju;Kim, Dae Heon;Kim, Moon-Soo;Kim, Do Sun;Ko, Kisung
    • Molecules and Cells
    • /
    • v.44 no.10
    • /
    • pp.770-779
    • /
    • 2021
  • Transgenic Arabidopsis thaliana expressing an anti-rabies monoclonal antibody (mAb), SO57, was obtained using Agrobacterium-mediated floral dip transformation. The endoplasmic reticulum (ER) retention signal Lys-Asp-Glu-Leu (KDEL) was tagged to the C-terminus of the anti-rabies mAb heavy chain to localize the mAb to the ER and enhance its accumulation. When the inaccurately folded proteins accumulated in the ER exceed its storage capacity, it results in stress that can affect plant development and growth. We generated T1 transformants and obtained homozygous T3 seeds from transgenic Arabidopsis to investigate the effect of KDEL on plant growth. The germination rate did not significantly differ between plants expressing mAb SO57 without KDEL (SO plant) and mAb SO57 with KDEL (SOK plant). The primary roots of SOK agar media grown plants were slightly shorter than those of SO plants. Transcriptomic analysis showed that expression of all 11 ER stress-related genes were not significantly changed in SOK plants relative to SO plants. SOK plants showed approximately three-fold higher mAb expression levels than those of SO plants. Consequently, the purified mAb amount per unit of SOK plant biomass was approximately three times higher than that of SO plants. A neutralization assay revealed that both plants exhibited efficient rapid fluorescent focus inhibition test values against the rabies virus relative to commercially available human rabies immunoglobulins. KDEL did not upregulate ER stress-related genes; therefore, the enhanced production of the mAb did not affect plant growth. Thus, KDEL fusion is recommended for enhancing mAb production in plant systems.

Biodegradability of Artificial Bait for Blue Crab Pots and Its Effect on Seawater Quality (꽃게 통발용 인공미끼의 생분해도 및 해양수질 영향)

  • Jeong, Byung-Gon;Koo, Jae-Geun;Chang, Ho-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.2
    • /
    • pp.96-103
    • /
    • 2009
  • The biodegradability in water of the artificial baits for blue crab pots which were made of intestines of mackerel, tuna and grinded krill were studied. The biodegradability of artificial bait was evaluated with the effective capacity of 10L water tank which was made of acryl pipe at the velocity of 1m/d and hydraulic retention time of 12 hours. For the 23 days operation time, all artificial baits were degraded fast at the early stage of operation time and stabilized within 5 days after start up. The rates of biodegradation were different depending on the raw materials of artificial baits. In terms of degradation rate of organic matter which can be expressed as COD, artificial bait made of tunas intestine showed the fastest degradation rate. On the other hand, in terms of degradation rate of nitrogenous matter which can be expressed as ammonia nitrogen, artificial bait made of mackerels intestine showed the fastest degradation rate. In order to evaluate the effect of artificial bait on marine ecosystem, seawater qualities including SS, COD, DO, nitrogen, phosphorus were determined depending on depth and location during 2 days test operation period. It is apparent that the effect of artificial bait on seawater quality was negligible when comparing seawater quality of test operation area with control area.

  • PDF

A Study on the Elution Behavior of some Metal-N-Alkylisonitrosoacetylacetone imine Chelates by Reversed Phase High Performance Liquid Chromatography (역상 액체 크로마토그래피에 의한 몇 가지 금속-N-Alkylisonitrosoacetylacetone imine 킬레이트의 용리거동에 관한 연구)

  • Kim, Yong Jun;Kewon, Ji Hae;Lee, Won
    • Analytical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.63-71
    • /
    • 1992
  • Liquid chromatographic behavior of Pd(II), Ni(II) and Co(III) in N-Alkylisonitrosoacetylacetone imine(HIAA-NR) chelates was investigated by reversed phase high perfomance liquid chromatography. The optimum conditions for the separation of IAA-NR-metal chelates were examined respect to the flow rate and mobile phase strength. The metal-N-Alkylisonitrosoacetylacetone imine chelates in solution were successfully separated on Novapak $C_{18}$ column using acetonitrile/water mixture as mobile phase. The elution order of chelates is methyl>ethyl>propyl>butyl as N-alkyl group for ligand is varied. It was found that all IAA-NR-metal chelates were eluted in an acceptable range of capacity factor value($0{\leq}log\;k^{\prime}{\leq}1$). The dependence of log k' on the volume fraction of water in the binary mobile phase was examined. Also, the dependence of k' on the liquid-liquid extraction distribution ratio(Dc) in acetonitrile-water-alkane extraction system was investigated for IAA-NR-metal chelate. Both kinds of dependence are linear, which suggests that the retention of the electroneutral metal chelates on Novapak $C_{18}$ column is largely due to the hydrophobic effect.

  • PDF

Performances of Ceramic-tube and Pall-ring Upflow Anaerobic Filters Treating a Dairy Waste (세라믹튜브 및 패킹형플라스틱 여재충전 상향류식 혐기성여상에 의한 유가공 폐수처리)

  • Hur, Joon-Moo;Chang, Duk;Pae, Hyung-Suk;Kim, Soo-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.1
    • /
    • pp.37-44
    • /
    • 2000
  • Laboratory experiments were conducted to investigate the performances of anaerobic filters packed with ceramic tube and pall-ring media treating a dairy waste. The media packing volume was 65% of effective volume of anaerobic filter. Organics removals of anaerobic filters were maintained above 80% even at an organics loading rate of $10kgCOD/m^3/d$, and this was comparable to aerobic treatment of organic wastes. Organics removals of the ceramic tube anaerobic filters were always lower than those of the pall-ring anaerobic filters due to intrinsic physical property of ceramic tube, especially lower void space which caused to clogging and entrapment of biogas, substrate transfer limitation, and irregular evolution of biogas leading to loss of solids and biomass. This was clearly observed in higher concentration of TSS in the effluent from the ceramic tube anaerobic filter despite of higher retention capacity of TSS compared with pall-ring media. Vertical distribution of organics and solids in the filters showed above 90% of organics and solids in influent were removed below 20% of reactor height, and 50% of remaining organics and solids were removed though media packing zone. Effluent quality from the anaerobic filter was heavily depended on media itself as well as suspended biomass formed below media. It is therefore concluded that the type of media played an important role in biomass accumulation arid gas-liquid-solid separation efficiency. Type of media did not affect the start-up behaviors of the anaerobic filter, and supernatant from anaerobic digested sludge showed a good performance as a seeding materials.

  • PDF

Electrochemical Synthesis of TiO2 Microcones/CNT Composites as Anode Material for Lithium Ion Batteries (TiO2 마이크로콘/CNT 복합체의 전기화학적 합성 및 리튬 이온 전지 음극 소재로의 응용)

  • Shin, Nahyun;Kim, Yong-Tae;Choi, Jinsub
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.509-513
    • /
    • 2020
  • The performance of TiO2 microcones/CNT composites as an anode material for lithium ion batteries was investigated. TiO2 microcones/CNT composites were prepared by the polarization followed by electrophoretic deposition approaches on anodic TiO2 microcones, which were composed of individual nanofragments resulting in a large surface area where lithium ion can be stored. Compared to pristine TiO2 microcones, TiO2 microcones/CNT composite electrodes showed higher areal capacity with a stable cyclability due to an enhanced electrical and lithium ion conductivity. Furthermore, TiO2 microcones/CNT composite electrodes exhibited good cycle life characteristics and excellent rate retention under a high current density of up to 20 C.

Synthesis of Multiwall Carbon Nanotube/Graphene Composite by Aerosol Process and Its Characterization for Supercapacitors (에어로졸 공정에 의한 Multiwall carbon nanotube/Graphene 복합체 제조 및 슈퍼커패시터 특성평가)

  • Jo, Eun Hee;Kim, Sun Kyung;Chang, Hankwon;Lee, Chong Min;Park, Su-Ryeon;Choi, Ji-hyuk;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.12 no.4
    • /
    • pp.127-134
    • /
    • 2016
  • A multiwall carbon nanotube (MWCNT)/graphene (GR) composite was synthesized for an enhanced supercapacitor. Aerosol spray pyrolysis (ASP) was employed to synthesize the MWCNT/GR composites using a colloidal mixture of MWCNT and graphene oxide (GO). The effect of the weight ratio of the MWCNT/GO on the particle properties including the morphology and layered structure were investigated. The morphology of MWCNT/GR composites was generally the shape of a crumpled paper ball, and the average composite size was about $5{\mu}m$. MWCNT were uniformly dispersed in GR sheets and the MWCNT not only increase the basal spacing but also bridge the defects for electron transfer between GR sheets. Thus, it was increasing electrolyte/electrode contact area and facilitating transportation of electrolyte ion and electron in the electrode. Electrochemical data demonstrate that the MWCNT/GR (weight ratio=0.1) composite possesses a specific capacitance of 192 F/g at 0.1 A/g and good rate capability (88% capacity retention at 4 A/g) using two-electrode testing system.