• Title/Summary/Keyword: Capacity design

Search Result 5,682, Processing Time 0.036 seconds

A Study on Design of Optimal Location and Capacity of DC Substation for Mass Transit System (전철용 직류변전소의 최적 위치 및 용량 설계에 관한 연구)

  • Kim, J.K.;Lee, S.D.;Baek, B.S.;Lee, H.D.;Lee, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.398-401
    • /
    • 2000
  • This paper describes the design of optimal location and capacity of DC substation for Mass Transit System. Three factors are considered for the design i.e. substation arrangements, line configuration and substation power capacity. In this study, we considered all of them for capacity calculation of power supply system for MTS. At first, DC-fed-traction system is introduced on an outline, a characteristics of train and fed network, and design method of substation arrangements. Optimal design procedures are described, and program for capacity calculation of the system is presented. In addition, the computer simulated results are compared with the conventional simple calculation method.

  • PDF

A Preliminary Design Procedure for Seismic Retrofit Using Hysteretic Dampers (이력형 감쇠장치를 이용한 내진보강 예비설계절차)

  • Jeong, Gook-ki;Yu, Eunjong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.59-69
    • /
    • 2022
  • The use of dampers is being considered a means to improve the seismic performance of buildings. It may take considerable time and effort to find an optimal design solution since repeated three-dimensional nonlinear time history analyses are required. Therefore, a preliminary design procedure for seismic retrofit using hysteretic dampers was proposed in this study. In the proposed procedure, the amount of retrofit (required number of dampers) is estimated from the capacity curve of the building before retrofit and allowable story drift of the building. In combining the capacity curves of the building and the dampers, the deformation demand for the dampers can be easily checked against their deformation capacity. The equations to transform the device displacement to roof displacement for the combination of capacity curves are developed. The proposed procedure was applied to the seismic retrofit design of sample buildings. The study found that the estimated capacity curve was very close to the actual capacity curve obtained from the pushover analysis, which can determine an appropriate configuration to meet the required seismic performance.

Freeway Design Capacity Estimation through the Analysis of Time Headway Distribution (차두시간분포 분석을 통한 고속도로 설계용량 산정모형의 개발)

  • Kim, Jum San;Park, Chang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2D
    • /
    • pp.251-258
    • /
    • 2006
  • This study is to develop an estimation method of freeway design capacity through the analysis of time headway distribution in continuum flow. Traffic flow-speed diagram and time headway distribution plotted from individual vehicle data shows: a) a road capacity is not deterministic but stochastic, b) time headway distribution for each vehicle speed group follows pearson type V distribution. The freeway design capacity estimation model is developed by determining a minimum time headway for capacity with stochastic method. The estimated capacity values for each design speed are lower when design speed ${\leq}80km/h$, and higher when design speed ${\geq}106km/h$ in comparison with HCM(2000)'s values. In addition, The distinguish difference is that this model leads flexible application in planning level by defining the capacity as stochastic distribution. In detail, this model could prevent a disutility to add a lane for only one excess demand in a road planning level.

A study on the improvement of the digging load capacity of an excavator by CAD technique (CAD에 의한 엑스카 베이터(excavator)의 굴삭능력 향상에 관한 연구)

  • 박찬기;이장무
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.24-34
    • /
    • 1982
  • In order to improve the digging load capacity of a domestic excavator model. computer aided design(CAD) technique was applied to the optimum design of the excavator boom. From this study, the digging load capacity of both the bucket cylinder and the dipperstick cylinder could be made about same and the overall digging load capacity could be increased by about 50%, also, the computer program package developed in this study can be flexibly applied to the design of other construction machines by changing and/or adding a few subprograms and the input data.

  • PDF

Seismic Capacity Evaluation of Bridge Structure using Capacity Spectrum Method (역량스펙트럼법에 의한 교량 구조물의 내진성능평가)

  • 박연수;오백만;박철웅;서병철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.67-73
    • /
    • 2003
  • The present seismic analysis of Road-Bridge Design Standard is on a basis of load-based analysis which lets structures have the strength over load. In this study, the capacity spectrum method, a kind of displacement based method, which is evaluated by displacement of structure, is presented as an alternative to the analysis method based on load. Seismic capacity is performed about the existing reinforced concrete pier which has already secured seismic design by capacity spectrum method. As a result. capacity spectrum method could realistically evaluate the non-elastic behavior of structures easily and quickly and the displacement of structures for variable ground motion level. And it could efficiently apply to an evaluation of seismic capacity about the existing structure and a verification of design for capacity target of the new structure.

Earthquake Design Method for Structural Walls Based on Energy Dissipation Capacity (에너지 소산능력을 고려한 전단벽의 내진설계)

  • 박홍근;엄태성
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.25-34
    • /
    • 2003
  • Recently, performance-based analysis/design methods such as the capacity spectrum method and the direct displacement-based design method were developed. In these methods, estimation of energy dissipation capacity of RC structures depends on empirical equations which are not sufficiently accurate, On the other hand, in a recent study, a simplified method for evaluating energy dissipation capacity was developed. In the present study, based on the evaluation method, a new seismic design method for flexure-dominated RC walls was developed. In determination of earthquake load, the proposed design method can address variations of energy dissipation capacity with design parameters such as dimensions and shapes of cross-sections, axial force, and reinforcement ratio and arrangement, The proposed design method was compared with the current performance-based design methods. The applicability of the proposed method was discussed.

Internal force monitoring design of long span bridges based on ultimate bearing capacity ratios of structural components

  • Hu, Ke;Xie, Zheng;Wang, Zuo-Cai;Ren, Wei-Xin;Chen, Lei-Ke
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.93-110
    • /
    • 2018
  • In order to provide a novel strategy for long-span bridge health monitoring system design, this paper proposes a novel ultimate bearing capacity ratios based bridge internal force monitoring design method. The bridge ultimate bearing capacity analysis theories are briefly described. Then, based on the ultimate bearing capacity of the structural component, the component ultimate bearing capacity ratio, the uniformity of ultimate bearing capacity ratio, and the reference of component ultimate bearing capacity ratio are defined. Based on the defined indices, the high bearing components can then be found, and the internal force monitoring system can be designed. Finally, the proposed method is applied to the bridge health monitoring system design of the second highway bridge of Wuhu Yangtze river. Through the ultimate bearing capacity analysis of the bridge in eight load conditions, the high bearing components are found based on the proposed method. The bridge internal force monitoring system is then preliminary designed. The results show that the proposed method can provide quantitative criteria for sensors layout. The monitoring components based on the proposed method are consistent with the actual failure process of the bridge, and can reduce the monitoring of low bearing components. For the second highway bridge of Wuhu Yangtze river, only 59 components are designed to be monitored their internal forces. Therefore, the bridge internal force monitoring system based on the ultimate bearing capacity ratio can decrease the number of monitored components and the cost of the whole monitoring system.

A Study on Design Method of Geogrid Encased Stone Colum for Settlement Reduction in Railroad (철도노반 침하저감을 위한 토목섬유 감쌈 쇄석말뚝 설계방안 고찰)

  • Lee, Dae-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.3
    • /
    • pp.31-38
    • /
    • 2014
  • The geogrid encased stone column (GESC) system, which increases the confinement effect, has been developed to improve the load carrying capacity of stone columns. The resonable design method for calculating the geogrid ring tension force and ultimate bearing capacity that can be applied to the design of GESC is proposed. In order to calculate design procedure for GESC, two ultimate bearing capacities were compared. One is the ultimate bearing capacity measured using data of the field loading test in light railway site and the other is the ultimate bearing capacity using suggested design procedure of GESC. The results indicated that design method of GESC higher ultimate bearing capacities compared with field loading test.

A Study on Optimal Design of DC Substation Capacity for Mass Transit System (전철용 직류변전소의 최적용량설계에 관한 연구)

  • Kim, J.K.;Lee, S.D.;Baek, B.S.;Lee, H.D.;Lee, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1405-1407
    • /
    • 2000
  • This paper is on optimal design for DC substation capacity for Mass Transit System. Three factors are considered for the design i.e. substation arrangements, line configuration and substation power capacity. In this study, we discussed substation power capacity only. At first, DC-fed-traction system is introduced on an outline, a characteristics of train and fed network. Optimal design procedures is described, and modelling for DC-fed-traction system are presented. The circuit-solution method is presented by matrix formula. In order to simulate DC substation power capacity more closely to actual situations, we proposed the program.

  • PDF

Experimental seismic behavior of RC special-shaped column to steel beam connections with steel jacket

  • Hao, Jiashu;Ren, Qingying;Li, Xingqian;Zhang, Xizhi;Ding, Yongjun;Zhang, Shaohua
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.101-118
    • /
    • 2022
  • The seismic performance of the reinforced concrete (RC) special-shaped column to steel beam connections with steel jacket used in the RC column to steel beam fabricated frame structures was investigated in this study. The three full-scale specimens were subjected to cyclic loading. The failure mode, ultimate bearing capacity, shear strength capacity, stiffness degradation, energy dissipation capacity, and strain distribution of the specimens were studied by varying the steel jacket thickness parameters. Test results indicate that the RC special-shaped column to steel beam connection with steel jacket is reliable and has excellent seismic performance. The hysteresis curve is full and has excellent energy dissipation capacity. The thickness of the steel jacket is an important parameter affecting the seismic performance of the proposed connections, and the shear strength capacity, ductility, and initial stiffness of the specimens improve with the increase in the thickness of the steel jacket. The calculation formula for the shear strength capacity of RC special-shaped column to steel beam connections with steel jacket is proposed on the basis of the experimental results and numerical simulation analysis. The theoretical values of the formula are in good agreement with the experimental values.