• Title/Summary/Keyword: Capacitor-less

Search Result 207, Processing Time 0.025 seconds

A Capacitor-less Low Dropout Regulator for Enhanced Power Supply Rejection

  • Yun, Seong Jin;Kim, Jeong Seok;Jeong, Taikyeong Ted.;Kim, Yong Sin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.3
    • /
    • pp.152-157
    • /
    • 2015
  • Various power supply noise sources in a system integrated circuit degrade the performance of a low dropout (LDO) regulator. In this paper, a capacitor-less low dropout regulator for enhanced power supply rejection is proposed to provide good power supply rejection (PSR) performance. The proposed scheme is implemented by an additional capacitor at a gate node of a pass transistor. Simulation results show that the PSR performance of the proposed LDO regulator depends on the capacitance value at the gate node of the pass transistor, that it can be maximized, and that it outperforms a conventional LDO regulator.

Switched Capacitor Based High Gain DC-DC Converter Topology for Multiple Voltage Conversion Ratios with Reduced Output Impedance

  • Priyadarshi, Anurag;Kar, Pratik Kumar;Karanki, Srinivas Bhaskar
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.676-690
    • /
    • 2019
  • This paper presents a switched capacitor (SC) based bidirectional dc-dc converter topology for high voltage gain applications. The proposed converter is able to operate with multiple integral voltage conversion ratios based on user input. The architecture of a user-friendly, inductor-less multi-voltage-gain bidirectional dc-dc converter is proposed in this study. The inductor-less or magnetic-less design of the proposed converter makes it effective in higher temperature applications. Furthermore, the proposed converter has a reduced component count and lower voltage stress across its switches and capacitors when compared to existing SC converters. An output impedance analysis of the proposed converter is presented and compared with popular existing SC converters. The proposed converter is simulated in the OrCAD PSpice environment and the obtained results are presented. A 200 W hardware prototype of the proposed SC converter has been developed. Experimental results are presented to validate the efficacy of the proposed converter.

Unified Dual-Gate Phase Change RAM (PCRAM) with Phase Change Memory and Capacitor-Less DRAM (Phase Change Memory와 Capacitor-Less DRAM을 사용한 Unified Dual-Gate Phase Change RAM)

  • Kim, Jooyeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.2
    • /
    • pp.76-80
    • /
    • 2014
  • Dual-gate PCRAM which unify capacitor-less DRAM and NVM using a PCM instead of a typical SONOS flash memory is proposed as 1 transistor. $VO_2$ changes its phase between insulator and metal states by temperature and field. The front-gate and back-gate control NVM and DRAM, respectively. The feasibility of URAM is investigated through simulation using c-interpreter and finite element analysis. Threshold voltage of NVM is 0.5 V that is based on measured results from previous fabricated 1TPCM with $VO_2$. Current sensing margin of DRAM is 3 ${\mu}A$. PCM does not interfere with DRAM in the memory characteristics unlike SONOS NVM. This novel unified dual-gate PCRAM reported in this work has 1 transistor, a low RESET/SET voltage, a fast write/erase time and a small cell so that it could be suitable for future production of URAM.

Case Study of Power Factor Correction Capacitors On Upseting Elevator (고압 커패시터 투입시 수용가측 엘리베이터 정지사례 분석)

  • Cho, Nam-Hun;Jun, Young-Jae;Park, Hea-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.33-35
    • /
    • 2003
  • Capacitor switching is essential for the economic operation, and proper voltage control of KOREA electric utility distribution system. Voltage transients produced by capacitor switching (around 2.0 per unit at substation and 2.5 or less per unit at customer site, and lasting less then 1ms) do not have the magnitude or duration to interfere with the operation of computers, but they do disrupt the operation of adjustable speed drivers. The result of our research, ASD manufacturers should team from the computer industry and design products that will operate satisfactory in the electrical envelopment in which they will be placed. In this case history, the inductors on the input to ADSs in order to prevent nuisance tripping from capacitor switching(and other causes within the apartment) proved to be an effective, low-cost solution.

  • PDF

Optimal Design of a Damped Input Filter Based on a Genetic Algorithm for an Electrolytic Capacitor-less Converter

  • Dehkordi, Behzad Mirzaeian;Yoo, Anno;Sul, Seung-Ki
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.418-429
    • /
    • 2009
  • In this paper an optimal damped input filter is designed based on a Genetic Algorithm (GA) for an electrolytic capacitor-less AC-AC converter. Sufficient passive damping and minimum losses in passive damping elements, minimization of the filter output impedance at the filter cut-off frequency, minimization of the DC-link voltage and input current fluctuations, and minimization of the filter costs are the main objectives in the multi-objective optimization of the input filter. The proposed filter has been validated experimentally using an induction motor drive system employing an electrolytic capacitor-less AC-AC converter.

DC-DC Converter of High Efficiency by using Loss-less Snubber Capacitor (무손실 스너버 커패시터에 의한 고효율의 DC-DC 컨버터)

  • Kwak, Dong-Kurl;Lee, Bong-Seob;Kim, Choon-Sam;Shim, Jae-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1049-1050
    • /
    • 2006
  • This paper is proposed to a novel DC-DC converter operated high efficiency for loss-less snubber capacitor. The general converters of high efficiency is made that the power loss of the used switching devices is minimized. To achieve the soft switching operation of the used control switches, the proposed converter is constructed by using a loss-less snubber capacitor. The proposed converter achieves the soft-switching for all switching devices without increasing their voltage and current stresses. The result is that the switching loss is very low and the efficiency of converter is high. The soft switching operation of the proposed converter is verified by digital simulation and experimental results.

  • PDF

AC-DC Converter for Electrolytic Capacitor-less LED Driver with Reduced LED Peak Current (LED 구동전류의 피크값이 저감된 전해 커패시터 없는 AC-DC 컨버터)

  • Kang, Kyoung-Suk;Park, Gwon-Sik;Seo, Byung-Jun;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.59-65
    • /
    • 2018
  • A new single-stage flyback power converter with PFC for electrolytic capacitor-less LED driver is proposed in this study. This method minimizes the peak-to-average ratio of the LED driving pulsating current by adding the LED driving current near the LED current valley area, as well as the third harmonic component injection into the input current. The reduced peak current value of the LED drive current minimizes the thermal stress of the LED itself, thereby increasing the reliability of the LED, as well as achieving a long lifetime. Simulation and experimental results show the usefulness of the proposed topology.

Characteristics of polysilicon capacitor as insulator formation method (절연막 형성 방법에 따른 다결정실리콘 캐패시터의 특성)

  • 노태문;이대우;김광수;강진영;이덕문
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.7
    • /
    • pp.58-68
    • /
    • 1995
  • Polysilicon capacitors with pyrogenic oxide and TEOX oxide as insulators were fabricated to develop capacitors which can be applied to analog CMOS IC, and the characteristics of the capacitors were compared with each other. The morphology of bottom polysilicon in pyrogenic oxide capacitor is degraded due to the generaged protuberances of the polysilicon grain during oxidataion. The polysilican capacitor with pyrogenic oxide of 57 nm thickness showed that the effective potential barrier height of 0.45 eV is much less than that of MOS capacitor (3.2 eV)when the top electrode is biased with a positive volgate. The morphology of the polysilicon capacitor with TEOS oxide, however, was not degraded during oxide deposition by LPCVD. The polysilicon capacitor with TEOS oxide of 54 nm thickness showed the effective potential barrier height of 1.28 eV when the top electrode is biased with a negative voltage. Therefore, it is concluded that the polysilicon capacitor with TEOS oxide is more applicable to analog CMOS IC than the pyrogenic oxide polysilicon capacitor.

  • PDF

Ripple Voltage Compensation Instantaneous Follow Controller of Inverter by using Analog Integrator (아날로그 적분기를 이용한 맥동전압 보상형 순시추종 PWM 제어기를 적용한 인버터)

  • 라병훈;이현우;김광태
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.381-389
    • /
    • 2004
  • In this paper, it is suggested that instantaneous compensation PWM control for inverter without the smoothing capacitor Therefore, this inverter system has several advantages. It has small volume and low price to manufacture, decrease trouble rate of inverter, and has power factor correction effect because huge smoothing capacitor-less. And it has compact size control circuit to use analog integrator device. It could make the smoothing capacitor-less inverter for air-blower motor by using the instantaneous compensation PWM controller. This inverter system has small volume and value compare with the conventional VVVF control inverter.

Control of Motor Drives Fed by PFC Circuits without DC-Link Electrolytic Capacitors

  • Kim, Kwang-Man;Kim, Eung-Ho;Choi, Jong-Woo
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1067-1074
    • /
    • 2018
  • This paper presents a control method for variable-speed motor drives that do not use a DC-link electrolytic capacitor. The proposed circuit consists of a power factor correction converter for boosting the DC-link voltage, an inverter for driving the motor, and a small DC-link film capacitor. By employing a small DC-link capacitor, the proposed circuit that is small, and a low cost and weight are achieved. However, because the DC-link voltage varies periodically, the control of the circuit is more difficult than that of the conventional method. Using the proposed control method, an inverter can be controlled reliably even when the capacitance of the DC-link capacitor is very small. Experiments are performed using a 1.5-kW inverter with a $20-{\mu}F$ DC-link capacitor, and the experimental results are analyzed thoroughly.