• Title/Summary/Keyword: Capacitive sensing

Search Result 100, Processing Time 0.023 seconds

Triboelectrification based Multifunctional Tactile Sensors

  • Park, Hyosik;Kim, Jeongeun;Lee, Ju-Hyuck
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.139-144
    • /
    • 2022
  • Advanced tactile sensors are receiving significant attention in various industries such as extended reality, electronic skin, organic user interfaces, and robotics. The capabilities of advanced tactile sensors require a variety of functions, including position sensing, pressure sensing, and material recognition. Moreover, they should comsume less power and be bio-friendly with human contact. Recently, a tactile sensor based on the triboelectrification effect was developed. Triboelectric tactile sensors have the advantages of wide material availability, simple structure, and low manufacturing cost. Because they generate electricity by contact, they have low power consumption compared to conventional tactile sensors such as capacitive and piezoresistive. Furthermore, they have the ability to recognize the contact material as well as execute position and pressure sensing functions using the triboelectrification effect. The aim of this study is to introduce the progress of research on triboelectrification-based tactile sensors with various functions such as position sensing, pressure sensing and contact material recognition.

Development of Force/Displacement Sensing System for Nanomachining (나노 가공을 위한 힘.변위 검출시스템 개발)

  • Bang, Jin-Hyeok;Kwon, Ki-Hwan;Park, Jae-Jun;Cho, Nahm-Gyoo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.777-781
    • /
    • 2004
  • This paper presents a force/displacement sensing system to measure penetration depths and machining forces during pattering operation. This sensing system consists of a leaf spring mechanism and a capacitive sensor, which is mounted on a PZT driven in-feed motion stage with 1nm resolution. The sample is moved by a xy scanning motion stage with 5nm resolution. The constructed system was applied to nano indentation experiments, and the load-displacement curves of silicon(111) and aluminum were obtained. Then, the indentation samples were measured by AFM. Experimental results demonstrated that the developed system has the ability of preforming force/depth sensing indentations

  • PDF

Innovative Differential Hall Effect Gap Sensor through Comparative Study for Precise Magnetic Levitation Transport System

  • Lee, Sang-Han;Park, Sang-Hui;Park, Se-Hong;Sohn, Yeong-Hoon;Cho, Gyu-Hyeong;Rim, Chun-Taek
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.310-319
    • /
    • 2016
  • Three types of gap sensors, a capacitive gap sensor, an eddy current gap sensor, and a Hall effect gap sensor are described and evaluated through experiments for the purpose of precise gap sensing for micrometer scale movement, and a novel type of differential hall effect gap sensor is proposed. Each gap sensor is analyzed in terms of resolution and environment dependency including temperature dependency. Furthermore, a transport system for AMOLED deposition is introduced as a typical application of gap sensors, which are recently receiving considerable attention. Based on the analyses, the proposed differential Hall effect gap sensor is found to be the most suitable gap sensor for precise gap sensing, especially for application to a transport system for AMOLED deposition. The sensor shows resolution of $0.63mV/{\mu}m$ for the overall range of the gap from 0 mm to 2.5 mm, temperature dependency of $3{\mu}m/^{\circ}C$ from $20^{\circ}C$ to $30^{\circ}C$, and a monotonic characteristic for the gap between the sensor and the target.

Implementation of 24-Channel Capacitive Touch Sensing ASIC (24 채널 정전 용량형 터치 검출 ASIC의 구현)

  • Lee, Kyoung-Jae;Han, Pyo-Young;Lee, Hyun-Seok;Bae, Jin-Woong;Kim, Eung-Soo;Nam, Chul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.5
    • /
    • pp.34-41
    • /
    • 2011
  • This paper presents a 24 channel capacitive touch sensing ASIC. This ASIC consists of analog circuit part and digital circuit part. Analog circuits convert user screen touch into electrical signal and digital circuits represent this signal change as digital data. Digital circuit also has an I2C interface for operation parameter reconfiguration from host machine. This interface guarantees the stable operation of the ASIC even against wide operation condition change. This chip is implemented with 0.18 um CMOS process. Its area is about 3 $mm^2$ and power consumption is 5.3mW. A number of EDA tools from Cadence and Synopsys are used for chip design.

Fabrication of Capacitive-Type Humidity Sensor with Poly(p-phenylene ether sulfone) (폴리(페닐렌에테르설폰)을 이용한 용량형 습도센서의 제조)

  • Cho, Jae-Ick;Choi, Kyoon;Kim, Chang-Jung;Kim, Byung-Ik;Park, Sueng-Hyun;Bang, Gi-Suk
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.207-209
    • /
    • 2006
  • We fabricated a capacitive-type humidity sensor using poly (p-phenylene ether sulfone: PES) as a humidity sensitive layer. The PES was dissolved in m-cresol $(CH_3C_6H_4OH)$ and spin-coated on ITO-coated glass substrate. Gold was deposited by sputtering as a water-permeable upper electrode. The capacitance of the sensor was inversely proportional to sensing film thicknesses and showed an excellent linearity of less than 1% in the humidity range of 20 to 90%. The sensor haying a $1.4{\mu}m$ sensing layer showed a hysteresis of 1.3% and a good sensitivity of 1.14 at 20 kHz.

Low Power Detection Circuit for a Capacitive Fingerprint Sensor (용량성 지문센서를 위한 저전력 감지회로)

  • Jung, Seung-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.6
    • /
    • pp.1343-1348
    • /
    • 2011
  • A modified capacitive detection circuit of charge sharing scheme is proposed, which reduces the static power dissipation and increases the voltage difference between a ridge and valley more than a conventional circuit. The detection circuit is designed and simulated in 3.3V, $0.35{\mu}m$ standard CMOS process, 40MHz condition. The result shows about 47% power dissipation reduction and 90% improvement of difference between a ridge and valley sensing voltage. The proposed circuit is layout without area increasing of a one pixel.

Sensing Parameter Selection Strategy for Ultra-low-power Micro-servosystem Identification (초저전력 마이크로 서보시스템의 모델식별을 위한 계측 파라미터 선정 기법)

  • Hahn, Bongsu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.849-853
    • /
    • 2014
  • In micro-scale electromechanical systems, the power to perform accurate position sensing often greatly exceeds the power needed to generate motion. This paper explores the implications of sampling rate and amplifier noise density selection on the performance of a system identification algorithm using a capacitive sensing circuit. Specific performance objectives are to minimize or limit convergence rate and power consumption to identify the dynamics of a rotary micro-stage. A rearrangement of the conventional recursive least-squares identification algorithm is performed to make operating cost an explicit function of sensor design parameters. It is observed that there is a strong dependence of convergence rate and error on the sampling rate, while energy dependence is driven by error that may be tolerated in the final identified parameters.

An Inductive Position Sensor for Self-sensing Magnetic Suspension System (셀프센싱 자기 부상계를 위한 인덕턴스형 변위센서)

  • 윤형진;이상헌;백윤수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1038-1041
    • /
    • 2003
  • The magnetic suspension system is used in many areas, because it has great advantages. such as no friction, no noise, no lubrication and so on, but it is a unstable system in natural. It must have a feedback control with the position is measured for a stable levitation. There are an eddy-current sensor, a capacitive sensor, an inductive sensor, and an optical sensor with a laser as the sensor which measures displacements without contact. Among them, an inductive sensor is made with lower price than others. And it has a good linearity. In this paper, a magnetic circuit leads a linear equation between an input as a displacement and an output as a voltage. Experiments establish that voltage change according to displacement is linear. This paper presents the preliminary study of an inductive position sensing for self-sensing magnetic suspension system.

  • PDF

Sensing Mechanism Property of $RuO_2$ Thick Film Resistor. ($RuO_2$ 후막저항을 이용한 압력센서의 출력특성 개선)

  • Lee, Seong-Jae;Park, Ha-Young;Min, Nam-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.350-351
    • /
    • 2006
  • Thick film mechanical sensors can be categorized into four main areas piezoresistive, piezoelectric, capacitive and mechanic tube. In this areas, the thick film strain gage is the earliest example of a primary sensing element based on the substrates. The latest thick film sensor is used various pastes that have been specifically developed for pressure sensor application. Some elastic materials exhibit a change in bulk resistivity when they are subjected to displacement by an applied pressure. This property is referred to as piezoresistivity and is a major factor influencing the sensitivity of a piezoresistive strain gage. The effect of thick film resistors was first noticed in the early 1970, as described by Holmes in his paper in 1973.

  • PDF

A Study on the On-machine Profile Measurement of Large Aspheric Form using Capasitive Sensor (정전용량센서를 이용한 대구경 비구면 형상의 기상측정에 관한 연구)

  • Kim, Geon-Hee;Won, Jonh-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.56-61
    • /
    • 2003
  • This paper described about on-machine profile measurement of aspheric surfaces using contact probing technique in ultra precision machine. A contact probe has been designed as a sensing device to obtain measuring resolutions in nanometer regime using a circle leaf spring mechanism and a capacitive-type sensor. The contact probe which is installed on the z-axis is In touch with the aspheric objects which is fixed on the spindle of the diamond turning machine(DTM) during the measuring procedure. The x, z-axis motions of the machine are monitored by a set of two orthogonal plane mirror type laser interferometers. As a results, the developed contact probe on-machine measurement system showed 10 nanometers repeatability with a ${\pm}2{\sigma}$ and uncertainty of 200 nmPv.

  • PDF