• 제목/요약/키워드: Capacitive parameter

검색결과 31건 처리시간 0.025초

RLSE Based Batteryless Telemetry Capacitive Sensor System

  • Lee, Joon-Tark;Kim, Kyung-Yup
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.318-321
    • /
    • 2003
  • In case, sensor system performs where it is difficult to access physically and it is in the poor environment, it is limited to communicate by using wire and installing power module in sensor system. In this paper, it suggests how information is obtained from telemetry sensor by means of inductive coupling without battery. Comparing with the telemetry sensor system of inductive coupling by the power supply, this system estimates the capacitance of sensor with high precision in using RLSE, not the process of modulation and demodulation. In order to activate this system, inductive model is used and in case of time variant parameter, telemetry sensor system which has got high rate in accuracy is implemented by using the forgetting factor.

  • PDF

초저전력 마이크로 서보시스템의 모델식별을 위한 계측 파라미터 선정 기법 (Sensing Parameter Selection Strategy for Ultra-low-power Micro-servosystem Identification)

  • 한봉수
    • 제어로봇시스템학회논문지
    • /
    • 제20권8호
    • /
    • pp.849-853
    • /
    • 2014
  • In micro-scale electromechanical systems, the power to perform accurate position sensing often greatly exceeds the power needed to generate motion. This paper explores the implications of sampling rate and amplifier noise density selection on the performance of a system identification algorithm using a capacitive sensing circuit. Specific performance objectives are to minimize or limit convergence rate and power consumption to identify the dynamics of a rotary micro-stage. A rearrangement of the conventional recursive least-squares identification algorithm is performed to make operating cost an explicit function of sensor design parameters. It is observed that there is a strong dependence of convergence rate and error on the sampling rate, while energy dependence is driven by error that may be tolerated in the final identified parameters.

DC-Link Active Power Filter for High-Power Single-Phase PWM Converters

  • Li, Hongbo;Zhang, Kai;Zhao, Hui
    • Journal of Power Electronics
    • /
    • 제12권3호
    • /
    • pp.458-467
    • /
    • 2012
  • Single phase converters suffer from ripple power pulsating at twice the line frequency. The ripple power is usually absorbed by a bulky capacitor bank and/or a dedicative LC resonant link, resulting in a low power density and a high cost. An alternative solution is using a dc link active power filter (APF) to direct the pulsating power into another energy-storage component. The main dc link filter capacitor can then be reduced substantially. Based on a mainstream dc APF topology, this paper proposed a new control strategy incorporating both dual-loop control and repetitive control. The circuit parameter design is also re-examined from a control point of view. The proposed APF scheme has better control performance, and is more suited for high power applications since it works in CCM and with a low switching frequency.

Selective etching of SiO2 using embedded RF pulsing in a dual-frequency capacitively coupled plasma system

  • 염원균;전민환;김경남;염근영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.136.2-136.2
    • /
    • 2015
  • 반도체 제조는 chip의 성능 향상 및 단가 하락을 위해 지속적으로 pattern size가 nano size로 감소해 왔고, capacitor 용량은 증가해 왔다. 이러한 현상은 contact hole의 aspect ratio를 지속적으로 증가시킨바, 그에 따라 최적의 HARC (high aspect ratio contact)을 확보하는 적합한 dry etch process가 필수적이다. 그러나 HARC dry etch process는 많은 critical plasma properties 에 의존하는 매우 복잡한 공정이다. 따라서, critical plasma properties를 적절히 조절하여 higher aspect ratio, higher etch selectivity, tighter critical dimension control, lower P2ID과 같은 plasma characteristics을 확보하는 것이 요구된다. 현재 critical plasma properties를 제어하기 위해 다양한 plasma etching 방법이 연구 되어왔다. 이 중 plasma를 낮은 kHz의 frequency에서 on/off 하는 pulsed plasma etching technique은 nanoscale semiconductor material의 etch 특성을 효과적으로 향상 시킬 수 있다. 따라서 본 실험에서는 dual-frequency capacitive coupled plasma (DF-CCP)을 사용하여 plasma operation 동안 duty ratio와 pulse frequency와 같은 pulse parameters를 적용하여 plasma의 특성을 각각 제어함으로써 etch selectivity와 uniformity를 향상 시키고자 하였다. Selective SiO2 contact etching을 위해 top electrode에는 60 MHz pulsed RF source power를, bottom electrode에는 2MHz pulse plasma를 인가하여 synchronously pulsed dual-frequency capacitive coupled plasma (DF-CCP)에서의 plasma 특성과 dual pulsed plasma의 sync. pulsing duty ratio의 영향에 따른 etching 특성 등을 연구 진행하였다. 또한 emissive probe를 통해 전자온도, OES를 통한 radical 분석으로 critical Plasma properties를 분석하였고 SEM을 통한 etch 특성분석과 XPS를 통한 표면분석도 함께 진행하였다. 그 결과 60%의 source duty percentage와 50%의 bias duty percentage에서 가장 향상된 etch 특성을 얻을 수 있었다.

  • PDF

탄소접지극 접지임피던스의 주파수의존성과 과도응답특성의 해석 (Analysis of Transient Response Behavior and Frequency-Dependent Ground Impedances of the Carbon Ground Electrodes)

  • 이복희;이강수;김유하;엄상현
    • 조명전기설비학회논문지
    • /
    • 제27권2호
    • /
    • pp.54-61
    • /
    • 2013
  • This paper presents transient response behavior and frequency-dependent ground impedance of a single carbon ground electrode. The ground impedance of the carbon ground electrode was measured as a function of frequency of injected currents and simulated by using the distributed parameter circuit model with due regard to the frequency-dependent soil parameters, and the transient response behavior of the carbon ground electrode against impulse currents were investigated. As a consequence, the frequency-dependent ground impedance of the carbon ground electrode showed the capacitive behavior, that is, the ground impedance decreases with increasing the frequency of injected currents and lowers at the fast front time of impulse current. It was found that the carbon ground electrode is effective in grounding system for lightning protection. The ground impedance simulated with due regard to the frequency-dependent soil parameters was in good agreement with the measured data. The adequacy of the simulation technique and the distributed parameter circuit model for the carbon ground electrode was verified. It is expected that the simulation methodology, which analyzes the frequency-dependent ground impedance of the carbon ground electrode proposed in this work, can be used in the design of a grounding system for protection against lightning.

토양의 저항률 및 비유전율의 주파수의존성을 고려한 접지봉의 접지임피던스의 해석 (Analysis of the Grounding Impedance of a Ground Rod Considering the Frequency-Dependent Resistivity and Relative Permittivity of Soil)

  • 안창환;최종혁;이복희
    • 조명전기설비학회논문지
    • /
    • 제26권1호
    • /
    • pp.54-60
    • /
    • 2012
  • When the transient current with high frequency components such as lightning surges are injected the grounding electrodes, the performance of grounding electrodes should be evaluated as grounding impedance. It is restricted to analyze the grounding impedance by measurement approach since the grounding impedance is very different with the shape and size of grounding electrodes, resistivity and relative permittivity of soil and the frequency component of the injected current. So a variety of simulation approaches have been developed. Typically, the soil resistivity measured with low frequency and relative permittivity between 1 and 80 are used for simulation of the grounding impedance. However, the resistivity and relative permittivity of soil are changed with frequency of injected current. In this paper, the frequency-dependent resistivity and relative permittivity of soil are measured and these parameters are reflected in the simulation of the grounding impedance of a ground rod. The simulated results are compared with the measured results. As a result, the simulated results with frequency-dependent soil parameters show capacitive aspect like measured results in the frequency of lower than 100[kHz] and they are more consistent with the measured results in wide frequency range.

디지털신호처리기법을 이용한 중금속이온농도 결정의 SWSV 신호분석 (The SWSV signal analysis for decision of heavy metal ion concentration using digital signal processing method)

  • 이재춘
    • 디지털산업정보학회논문지
    • /
    • 제5권4호
    • /
    • pp.11-17
    • /
    • 2009
  • Polarography is a subclass of voltammetry where the working electrode is a dropping mercury electrode. More, I developed the experiment for raising up mercury electrode. In Voltammetry, information about an analyte is obtained by measuring the current as the potential is varied at oxidation-reduction reaction. A plot of current vs. potential in a polarography experiment shows the current oscillations correspoding to the drops of Hg falling from the capillary. The drops growth causes capacitive and faradic current. These changing current effects combined with experiments where the potential is continuously changed can result in noisy traces. The raising up type improved upon the method of dropping in hardware. In reduction of the noise, moving average smoothing method have been used. But the other procedure is introduced based on Fourier transformation. So FFT and IFFT engine was implemented and installed in my experiment. However, after experimentation, peak height as the measuring parameter gave a good linear relationship to concentration. The resolution of potential peaks of various kinds, using Zn and Cu as the example, was improved using the smoothing method.

새로운 측정방법을 이용한 바이폴라 트랜지스터에서의 직류 및 교류 전류 편중 효과에 관한 해석 (The Analysis of DC and AC Current Crowding Effects Model in Bipolar Junction Transistors Using a New Extraction Method)

  • 이흥수;이성현;김봉렬
    • 전자공학회논문지A
    • /
    • 제31A권8호
    • /
    • pp.46-52
    • /
    • 1994
  • DC and AC current crowding effects for microwave and high speed bipolar transistors are investigated in detail using a new and accurate measurement technique based on Z-parameter equationa. Using the new measurement technique dc and ac current crowding effects have been explained clearly in bipolar junction transistors. To model ac crowding effects a capacitive element defined as base capacitance (C$_b$), called ac crowding capacitance is added to base resistance in parallel thereby treating the base resistance(R$_b$) as base impedance Z$_b$. It is shown that base resistance decreases with increasing collector current due to dc current crowding and approaches to a certain limited value at high collector current due to current crowding and approaches to a certain limited value at high collector currents regardless of the emitter size. It is also observed that due to ac current crowding base capacitance increases with increasing collector current. To quantigy the ac crowding effects for SPICE circuit simulation the base capacitance(C$_b$) including the base depletion and diffusion components has been modeled with an analytical expression form.

  • PDF

서지전류에 대한 과도접지임피던스의 특성 (Characteristics of Transient Grounding Impedance under Surge Currents)

  • 이덕희;박종순
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권11호
    • /
    • pp.717-723
    • /
    • 1999
  • The transient characteristics of grounding systems play a major role in the protection of power equipments, electronic circuits and info-communication facilities against surges which arise from lightning or ground faults. Electronic devices are very weak against lightning surges injected from grounding systems and can be damaged. The malfunction and damage of electronic circuits bring about bad operation performances, a lot of economical losses, and etc. Therefore, in order to obtain the effective protection measure of electronic devices from overvoltages and lightning surges, the analysis of the transient grounding impedances in essential. One of this work is to examine the transient behaviors of grounding impedances under steplike currents for various grounding systems. And the other of this work is to evaluate the transient behaviors of a grid with rods under impulse currents and to investigate the effect of grounding lead wire. Transient grounding impedances of a grid with rods under impulse current waves have been measured as a parameter of the length of the grounding leads. Z-t, Z-i and V-i curves of transient grounding impedance under impulse current waveforms have been measured and analyzed. It was found that the grounding impedance gives the inductive, resistive and capacitive aspects under steplike current. Transient grounding impedance characteristics were very different with shapes, geometries of ground electrodes. Also, they were dependent on the waveform and magnitude of impulse current.

  • PDF

A Magnetic Energy Recovery Switch Based Terminal Voltage Regulator for the Three-Phase Self-Excited Induction Generators in Renewable Energy Systems

  • Wei, Yewen;Kang, Longyun;Huang, Zhizhen;Li, Zhen;Cheng, Miao miao
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1305-1317
    • /
    • 2015
  • Distributed generation systems (DGSs) have been getting more and more attention in terms of renewable energy use and new generation technologies in the past decades. The self-excited induction generator (SEIG) occupies an important role in the area of energy conversion due to its low cost, robustness and simple control. Unlike synchronous generators, the SEIG has to absorb capacitive reactive power from the outer device aiming to stabilize the terminal voltage at load changes. This paper presents a novel static VAR compensator (SVC) called a magnetic energy recovery switch (MERS) to serve as a voltage controller in SEIG powered DGSs. In addition, many small scale SEIGs, instead of a single large one, are applied and devoted to promote the generation efficiency. To begin with, an expandable mathematic model based on a d-q equivalent circuit is created for parallel SEIGs. The control method of the MERS is further improved with the objective of broadening its operating range and restraining current harmonics by parameter optimization. A hybrid control strategy is developed by taking both of the stand-alone and grid-connected modes into consideration. Then simulation and experiments are carried out in the case of single and double SEIG(s) generation. Finally, the measurement results verify that the proposed DGS with SVC-MERS achieves a better stability and higher feasibility. The major advantages of the mentioned variable reactive power supplier, when compared to the STATCOM, include the adoption of a small DC capacitor, line frequency switching, simple control and less loss.