• Title/Summary/Keyword: Capacitive Sensor

Search Result 329, Processing Time 0.022 seconds

Development and Experiment of a Micropositioning Parallel Manipulator (마이크로포지셔닝 병렬평행기구의 개발 및 실험)

  • Cha, Young-Youp;Yoon, Kwon-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.543-547
    • /
    • 2009
  • This paper describes the design, simulation, development, and experiment of a six degree-of-freedom micropositioning parallel manipulator. A movable stage was supported with six links, each of which extends with a dc-servo micropositioning actuator. In case of parallel manipulator, while the solution of the inverse kinematics is easily found by the vectors of the links which are composed of the joint coordinates in base and platform, but forward kinematic is not easily solved because of the nonlinearity and complexity of the parallel manipulator's kinematic output equation with the multi-solutions. The movable range of the prototype was ${\pm}25mm$ in the x- and y-directions and ${\pm}12.5mm$ in the z-direction. The minimum incremental motion of the prototype was $1{\mu}m$ in the x- and y-directions and $0.5{\mu}m$ in the z-direction. The repeatability of the prototype was ${\pm}2{\mu}m$ in the x- and y-directions and ${\pm}1{\mu}m$ in the z-direction. The motion performance was also evaluated by not only the computer simulation of CAD model but also the experiment using a capacitive sensor system.

A Study on the ECU for Controlling One Cylinder Motorcycle Engine (단기통 모터사이클 엔진 제어용 ECU에 관한 연구)

  • Jung, Tae-Gyun;Chae, Jae-Ou
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.13-20
    • /
    • 2005
  • The most typical fuel control devices of motorcycle engines have carburetors, they are simple in structure and reliable in work. Most of the motorcycle engines have used carburetors in the fuel system, but the fuel economy and the emissions of those engines are bad when we compared with automobile engines. According to stricter emission regulations and higher requirements for fuel economy, the application of the carburetor on the motorcycle engines would be limited. In this paper, we studied about the ECU of motorcycle engine controled by indirect method. A new engine system was designed and experiments were carried out. The experimental results for both carburetor type and ECU type were compared. Maximum torque of $1.053kg{\cdot}m$ at 6500rpm was measured. The engine torque controled using ECU was increased by $10\%$ compared with the carburetor type.

Nano and micro structures for label-free detection of biomolecules

  • Eom, Kil-Ho;Kwon, Tae-Yun;Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.403-420
    • /
    • 2010
  • Nano and micro structure-based biosensors are promising tool for label-free detection of biomolecular interactions with great accuracy. This review gives a brief survey on nano and micro platforms to sense a variety of analytes such as DNA, proteins and viruses. Among incredible nano and micro structure for bio-analytical applications, the scope of this paper will be limited to micro and nano resonators and nanowire field-effect transistors. Nanomechanical motion of the resonators transducers biological information to readable signals. They are commonly combined with an optical, capacitive or piezo-resistive detection systems. Binding of target molecule to the modified surface of nanowire modulates the current of the nanowire through electrical field-effect. Both detection methods have advantages of label-free, real-time and high sensitive detection. These structures can be extended to fabricate array-type sensors for multiplexed detection and high-throughput analysis. The biosensors based on these structures will be applied to lab-on-a-chip platforms and point-of-care diagnostics. Basic concepts including detection mechanisms and trends in their fields will be covered in this review.

A low cost miniature PZT amplifier for wireless active structural health monitoring

  • Olmi, Claudio;Song, Gangbing;Shieh, Leang-San;Mo, Yi-Lung
    • Smart Structures and Systems
    • /
    • v.7 no.5
    • /
    • pp.365-378
    • /
    • 2011
  • Piezo-based active structural health monitoring (SHM) requires amplifiers specifically designed for capacitive loads. Moreover, with the increase in number of applications of wireless SHM systems, energy efficiency and cost reduction for this type of amplifiers is becoming a requirement. General lab grade amplifiers are big and costly, and not built for outdoor environments. Although some piezoceramic power amplifiers are available in the market, none of them are specifically targeting the wireless constraints and low power requirements. In this paper, a piezoceramic transducer amplifier for wireless active SHM systems has been designed. Power requirements are met by two digital On/Off switches that set the amplifier in a standby state when not in use. It provides a stable ${\pm}180$ Volts output with a bandwidth of 7k Hz using a single 12 V battery. Additionally, both voltage and current outputs are provided for feedback control, impedance check, or actuator damage verification. Vibration control tests of an aluminum beam were conducted in the University of Houston lab, while wireless active SHM tests of a wind turbine blade were performed in the Harbin Institute of Technology wind tunnel. The results showed that the developed amplifier provided equivalent results to commercial solutions in suppressing structural vibrations, and that it allows researchers to perform active wireless SHM on moving objects with no power wires from the grid.

Development of Capacitive Sensing Based Self-sustainable Water Monitoring Sensor Node for Plant Growth Management (정전용량 센싱기반 식물생장관리용 자기유지 지원 수분 모니터링 센서노드 설계)

  • Song, Min-Hwan;Lee, Sang-Shin;Won, Kwang-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.986-988
    • /
    • 2012
  • 최적의 식물 생장을 위해서는 적절한 수분의 유지가 필수적이며 넓은 지역, 다양한 종류, 고가의 식물의 경우일수록 적절한 수분의 관리를 위한 시스템의 도움이 필요하다. 이를 위해 저가의 센서노드 시스템이 적절한 해결책이 될 수 있으나 일반적인 배터리 기반의 센서노드 시스템을 적용시 배터리 용량 확인 및 교체 등의 유지보수 문제가 대두된다. 본 논문에서는 이러한 유지보수의 문제를 해결하고 식물재배에 도움을 줄 수 있는 자기유지 지원 방식의 정전용량 센싱기반의 수분 모니터링 센서노드를 설계하였다. UHF 기반의 무선 전력 전송의 자기유지 지원 시스템 및 PCB 패턴기반의 정전용량센싱 수분센서와 초저전력 센서노드 시스템으로 구성된다. 센서노드는 한번 송신시 약 0.24 mJ을 소모하며 에너지획득모듈은 에너지 획득 주기마다 약 4 mJ의 에너지를 공급하도록 설계하여 센서동작을 위한 충분한 에너지 마진을 주도록 설계하였다.

COS MEMS System Design with Embedded Technology (Embedded 기술을 이용한 COS MEMS 시스템 설계)

  • Hong, Seon Hack;Lee, Seong June;Park, Hyo Jun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.405-411
    • /
    • 2020
  • In this paper, we designed the COS MEMS system for sensing the falling detection and explosive noise of fuse link in COS (Cut Out Switch) installing on the power distribution. This system analyzed the failure characteristics and an instantaneous breakdown of power distribution. Therefore, our system strengths the industrial competence and guaranties the stable power supply. In this paper, we applied BLE (Bluetooth Low Energy) technology which is suitable protocol for low data rate, low power consumption and low-cost sensor applications. We experimented with LSM6DSOX which is system-in-module featuring 3 axis digital accelerometer and gyroscope boosting in high-performance mode and enabling always-on low-power features for an optimal motion for the COS fuse holder. Also, we used the MP34DT05-A for gathering an ultra-compact, low power, omnidirectional, digital MEMS microphone built with a capacitive sensing element and an IC interface. The proposed COS MEMS system is developed based on nRF52 SoC (System on Chip), and contained a 3-axis digital accelerometer, a digital microphone, and a SD card. In this paper of experiment steps, we analyzed the performance of COS MEMS system with gathering the accelerometer raw data and the PDM (Pulse Data Modulation) data of MEMS microphone for broadcasting the failure of COS status.

EF Sensor-Based Hand Motion Detection and Automatic Frame Extraction (EF 센서기반 손동작 신호 감지 및 자동 프레임 추출)

  • Lee, Hummin;Jung, Sunil;Kim, Youngchul
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.102-108
    • /
    • 2020
  • In this paper, we propose a real-time method of detecting hand motions and extracting the signal frame induced by EF(Electric Field) sensors. The signal induced by hand motion includes not only noises caused by various environmental sources as well as sensor's physical placement, but also different initial off-set conditions. Thus, it has been considered as a challenging problem to detect the motion signal and extract the motion frame automatically in real-time. In this study, we remove the PLN(Power Line Noise) using LPF with 10Hz cut-off and successively apply MA(Moving Average) filter to obtain clean and smooth input motion signals. To sense a hand motion, we use two thresholds(positive and negative thresholds) with offset value to detect a starting as well as an ending moment of the motion. Using this approach, we can achieve the correct motion detection rate over 98%. Once the final motion frame is determined, the motion signals are normalized to be used in next process of classification or recognition stage such as LSTN deep neural networks. Our experiment and analysis show that our proposed methods produce better than 98% performance in correct motion detection rate as well as in frame-matching rate.

Fingerprint Segmentation and Ridge Orientation Estimation with a Mobile Camera for Fingerprint Recognition (모바일 카메라를 이용한 지문인식을 위한 지문영역 추출 및 융선방향 추출 알고리즘)

  • Lee Chulhan;Lee Sanghoon;Kim Jaihie;Kim Sung-Jae
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.89-98
    • /
    • 2005
  • Fingerprint segmentation and ridge orientation estimation algorithms with images from a mobile camera are proposed. The fingerprint images from a mobile camera are quite different from those from conventional sensor, called touch based sensor such as optical, capacitive, and thermal. For example, the images from a mobile camera are colored and the backgrounds or non-finger regions are very erratic depending on how the image capture time and place. Also the contrast between ridge and valley of a mobile camera image are lower than that of touch based sensor image. To segment fingerprint region, we first detect the initial region using color information and texture information. The LUT (Look Up Table) is used to model the color distribution of fingerprint images using manually segmented images and frequency information is extracted to discriminate between in focused fingerprint regions and out of focused background regions. With the detected initial region, the region growing algerian is executed to segment final fingerprint region. In fingerprint orientation estimation, the problem of gradient based method is very sensitive to outlier that occurred by scar and camera noise. To solve this problem, we propose a robust regression method that removes the outlier iteratively and effectively. In the experiments, we evaluated the result of the proposed fingerprint segmentation algerian using 600 manually segmented images and compared the orientation algorithms in terms of recognition accuracy.

Preprocessing Algorithm for Enhancement of Fingerprint Identification (지문이미지 인증률 향상을 위한 전처리 알고리즘)

  • Jung, Seung-Min
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.3
    • /
    • pp.61-69
    • /
    • 2007
  • This paper proposes new preprocessing algorithm to extract minutiae in the process of fingerprint recognition. Fingerprint images quality enhancement is a topic phase to ensure good performance in a topic phase to ensure good performance in a Automatic Fingerprint Identification System(AFIS) based on minutiae matching. This paper proposes an algorithm to improve fingerprint image preprocessing to extract minutiae accurately based on directional filter. We improved the suitability of low quality fingerprint images to better suit fingerprint recognition by using valid ridge vector and ridge probability of fingerprint images. With the proposed fingerprint improvement algorithm, noise is removed and presumed ridges are more clearly ascertained. The algorithm is based on five step: computation of effective ridge vector, computation of ridge probability, noise reduction, ridge emphasis, and orientation compensation and frequency estimation. The performance of the proposed approach has been evaluated on two set of images: the first one is self collected using a capacitive semiconductor sensor and second one is DB3 database from Fingerprint Verification Competition (FVC).

Basic Physiological Research on the Wing Flapping of the Sweet Potato Hawkmoth Using Multimedia

  • Nakajima, Isao;Yagi, Yukako
    • Journal of Multimedia Information System
    • /
    • v.7 no.2
    • /
    • pp.189-196
    • /
    • 2020
  • We have developed a device for recording biological data by inserting three electrodes and a needle with an angular velocity sensor into the moth for the purpose of measuring the electromyogram of the flapping and the corresponding lift force. With this measurement, it is possible to evaluate the moth-physiological function of moths, and the amount of pesticides that insects are exposed to (currently LD50-based standards), especially the amount of chronic low-concentration exposure, can be reduced the dose. We measured and recorded 2-channel electromyography (EMG) and angular velocity corresponding to pitch angle (pitch-like angle) associated with wing flapping for 100 sweet potato hawkmoths (50 females and 50 males) with the animals suspended and constrained in air. Overall, the angular velocity and amplitude of EMG signals demonstrated high correlation, with a correlation coefficient of R = 0.792. In contrast, the results of analysis performed on the peak-to-peak (PP) EMG intervals, which correspond to the RR intervals of ECG signals, indicated a correlation between ΔF fluctuation and angular velocity of R = 0.379. Thus, the accuracy of the regression curve was relatively poor. Using a DC amplification circuit without capacitive coupling as the EMG amplification circuit, we confirmed that the baseline changes at the gear change point of wing flapping. The following formula gives the lift provided by the wing: angular velocity × thoracic weight - air resistance - (eddy resistance due to turbulence). In future studies, we plan to attach a micro radio transmitter to the moths to gather data on potential energy, kinetic energy, and displacement during free flight for analysis. Such physiological functional evaluations of moths may alleviate damage to insect health due to repeated exposure to multiple agrochemicals and may lead to significant changes in the toxicity standards, which are currently based on LD50 values.