• Title/Summary/Keyword: Capacitive Gap

Search Result 62, Processing Time 0.028 seconds

Non-Contacting Capacitive Sensor with 4-Electrodes for Measuring Small Displacement (미소변위 측정용 비접촉식 4-전극형 전기용량 센서)

  • Lee, Rae-Duk;Kim, Han-Jun;Park, Se-Il;Semyonov, Yu. P.
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.90-96
    • /
    • 1998
  • Non-contacting capacitive sensors, based on principle of the cross capacitor, for measuring small displacement less than $1.95{\pm}0.5\;mm$ have been fabricated and characterized. To overcome disadvantages of the existed capacitive sensors with 2-electrodes and 3-electrodes, the new sensor is consisted of 4-electrodes which are formed two electrode(high, low) and 2 guard electrodes on a sapphire plate with diameter 17 mm and thickness 0.7 mm, and are symmetrically situated with a constant gap of 0.2 mm between the electrodes. This sensor can be used for measuring both metallic and non-metallic target without ground connection, and is evaluated to the correlation coefficient of 0.9987 for the range of $1.95{\pm}0.5\;mm$ and that of 0.9995 for $1.95{\pm}0.25\;mm$ range.

  • PDF

Design of Chipless RFID Tags Using Electric Field-Coupled Inductive-Capacitive Resonators (전계-결합 유도-용량성 공진기를 이용한 Chipless RFID 태그 설계)

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.530-535
    • /
    • 2021
  • In this paper, the design method for a chipless RFID tag using ELC resonators is proposed. A four-bit chipless RFID tag is designed in a two by two array configuration using three ELC resonators with different resonant peak frequencies and one compact IDC resonator. The resonant peak frequency of the bistatic RCS for the IDC resonator is 3.125 GHz, whereas those of the three ELC resonators are adjusted to be at 4.225 GHz, 4.825 GHz, and 5.240 GHz, respectively, by using the gap between the capacitor-shaped strips in the ELC resonator. The spacing between the resonators is 1 mm. Proposed four-bit tag is fabricated on an RF-301 substrate with dimensions of 50 mm×20 mm and a thickness of 0.8 mm. It is observed from experiment results that the resonant peak frequencies of the fabricated four-bit chipless RFID tag are 3.290 GHz, 4.295 GHz, 4.835 GHz, and 5.230 GHz, respectively, which is similar to the simulation results with errors in the range between -2.3% and 0.2%.

Precision Position Controller Design for a 6-DOF Stage with Piezoelectric Actuators and Lever Linkages Based on Nonlinearity Estimation (압전 구동기와 레버 링키지를 이용한 6 자유도 스테이지의 비선형성 평가에 기초한 정밀 위치 제어기의 설계)

  • Moon, Jun-Hee;Lee, Bong-Gu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1045-1053
    • /
    • 2009
  • Precision stages for 6-DOF positioning, actuated by PZT stacks, which are fed back by gap sensors and guided by flexure hinges, have enlarged their application territory in micro/nano manufacturing and measurement area. The precision stages inherently have such limitations as the nonlinearity between input and output in piezoelectric stacks, feedback signal noise in precision capacitive gap sensors and low material damping in precision kinematic linkages of mechanical flexures. To surmount these limitations, the precision stage is modeled with physics-based variables, which are identified by transient response correspondence, and a gain margin calculation algorithm using the Prandtl-Ishlinskii model and describing function is newly developed to assess system performance more precisely than linear controller design schemes. Based on such analyses, a precision positioning controller is designed. Excellent positioning accuracy with rapid settlement accomplished by the controller is shown in step responses of the closed-loop system.

Modeling of Capacitive Coplanar Waveguide Discontinuities Characterized with a Resonance Method (공진 주파수 측정방법을 이용한 Coplanar Waveguide 용량성 불연속 구조 설계)

  • Kim, Dong-Young;Jee, Yong
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.181-184
    • /
    • 2001
  • A coplanar waveguide(CPW) on a dielectric substrate consists of a center strip conductor with semi-infinite ground planes on either side. This type of waveguide offers several advantages over microstrip line. It facilitates easy shunt as well as series mounting of active and passive devices. It eliminates the need for wraparound and via holes, and it has a low radiation loss. These, as well as several other advantages, make CPW ideally suited for microwave integrated circuit applications. However, very little information is available in the literature on models for CPW discontinuities. This lack of sufficient discontinuity models for CPW has limited the application of CPW in microwave circuit design. We presented for the characteristics of coplanar waveguide open end capacitance and series gap capacitance. Measurements by utilizing the resonance method were made and the experimental data confirmed the validity of theories. The relationships between the CPW capacitances and the physical dimensions were studied.

  • PDF

Multiphase Homodyne Laser Interferometer with Four Bucket (Four-bucket 알고리즘을 이용한 레이저 간섭계)

  • Park, Yoon-Chang;Jeong, Kyung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.203-208
    • /
    • 1999
  • By tilting the reference mirror of Twynman-Green interferometer having a reference mirror and a moving mirror, firinge pattern composed of bright and dark parallel lines can be obtained and the fringe pattern is shifted according to the displacement of the mowing mirror. Several studies are executed for displacement measurement by detecting the intensity of the fringe with photo-diodes having small detecting area. In this study, to improve the sensitivity and robustness, the intensity of fringe is detected by using a large-area quadratic photo-diode masked with a grating panel having four kinds of binary grating having phase-difference of 0, {\pi}$/4, {\pi}$/2, 3 {\pi}$/4. The phase of the fringe is calculated with a simple 4-buckets algorithm. A experimental result shows that standard deviation of 5.653 nm is obtained comparing with a capacitive type gap sensor having nearly 1 nm accuracy.

  • PDF

Hysteresis Reduction in piezoelectric actuator by a charge control method (전하 제어법을 이용한 압전 액추에이터의 이력저감)

  • Jeong Soonjong;Lee Daesu;Song Jaesung;Hong Younpyo;Kang Eungu;Choi Wonjong
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.35-39
    • /
    • 2005
  • This paper presents a method to reduce hysteresis in multilayer ceramic actuator by connecting the actuator with a capacitor in a series circuit. The change in hysteresis with respect to the capacitor was examined. $0.2Pb(Mg_{1/3}Nb_{2/3})O_3-0.8Pb(Zr_{0.475}Ti_{0.525})O_3$ ceramic material was used as a piezoelectric material for the actuator. Displacement of the actuator was measured in a capacitive gap sensor measuring system. In case of inserting a capacitor in a total circuit, hysteresis became dramatically decreased, and then finally the hysteresis value can be reduced below $0.2\%$. It was found in this present study that reducing the hysteresis in the actuator is dependent upon the characteristics of the capacitor in total circuit and also operating frequency.

  • PDF

A Study on a process for signal to detect the continuous position of liquid (연속 수위 검출 신호 처리에 대한 연구)

  • Bae, Sang-June;Chae, Su-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.178-183
    • /
    • 2002
  • In this paper, the capacitive sensor which can detect the continuous position of liquid is proposed. The proposed sensor make up copper rod's defect which are oxidized in liquid and float switch's defect which are tired of continuous movements. This sensor make use of what capacitance is varying due to quantity and kind of dielectric in the plane gap. The operating principle of the sensor and the amplifying methode of detecting signal and the methode of apply in computer control system are presented in this paper.

  • PDF

원통형 커패시턴스 센서를 이용한 초정밀 공기 주축의 회전오차 측정

  • 김해일;박상신;한동철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.637-642
    • /
    • 1995
  • For measuring the error motion of ultra-precision spindle, eliminating the geometric errors is a must. Unless it is achieved, geometric errors will be dominant in data. Here, the roundness error and alignment error between spindle and sensor are to be removed. That's because typical error range of such spindle is muchless than geometric one. A capacitive transducer of cylidricalshape was developed, which takes full advantage of the spatial-averaging effect by using large area compared tpo the geometric error. This idea was first proposed by Chapman and here it is modified for better performance with nomical gap of 50 .mu. m and with newly designed guards which encompass the respective sensor to rectify the electrical field distribution in good shape. The measurement system is made to get the orbit of Ultra-Precision Air Spindle which is supposed to have its runout under 1 .mu. m. The Calibration data of this sensor is presented and the spindle orbit from 2000rpm to 5500rpm is showed. It is quite reasonable to use this sensor in the range of 60 .mu. m with an accuracy of several tens of nm.

Ethanol Concentration Sensor Using Microfluidic Metamaterial Absorber (에탄올의 농도를 검출하기 위한 미세유체 메타물질 흡수체)

  • Kim, Hyung Ki;Yoo, Minyeong;Lim, Sungjoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.5
    • /
    • pp.506-513
    • /
    • 2015
  • In this paper, we proposed a novel ethanol concentration sensor using microfluidic metamaterial absorber. The metamaterial absorber comprises a split-ring-cross resonator(SRCR) and a microfluidic channel. The SRCR can generate LC resonance that is very sensitive to changes in the effective dielectric constant around the capacitive gap. In addition, microfluidic channels can change the effective dielectric constant of the dielectric substrate by using an infinitesimal quantity of a liquid on the order of microliters. The proposed absorber can detect the electrical properties of different concentration of ethanol. The performance of the proposed absorber is demonstrated using the absorption measurements of a fabricated prototype sample with waveguides. In addition, the simulated results and measurement results show good agreement.

Development of Capacitive Type Humidity Sensor using Polyimide as Sensing Layer (폴리이미드를 감지층으로 이용한 정전용량형 습도센서 개발)

  • Hong, Soung-Wook;Kim, Young-Min;Yoon, Young-Chul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.366-372
    • /
    • 2019
  • In this paper, we fabricated a capacitive humidity sensor with an IDT(Interdigitated) electrode using commercial polyimide containing fluorine, and its properties were measured and analyzed. First, in order to analyze the composition of commercial polyimide, EDS analysis was performed after patterning process on a silicon wafer. The area of the humidity sensor was $1.56{\times}1.66mm^2$, and the width of the electrode and the gap between the electrodes were $3{\mu}m$ each. The number of electrodes was 166 and the length of the electrode was 1.294mm for the sensitivity of the sensor. The fabricated sensor showed that the sensitivity was 24 fF/%RH, linearity <${\pm}2.5%RH$ and hysteresis <${\pm}4%RH$. As a result of measuring the capacitance value according to the frequency change, the capacitance vlaue decreased with increasing frequency. Capacitance deviations with 10kHz and 100kHz were measured as 0.3pF on average.