• Title/Summary/Keyword: Capacitive Gap

Search Result 62, Processing Time 0.03 seconds

A Development of the Rotary Arc Gap Switch for Pulsed High Current Transfer (펄스 대전류 Rotary Arc Gap 스위치 개발)

  • Cho, Chu-Hyun;Lee, Hong-Sik;Rim, Geun-Hie;Pavlov, E.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2239-2241
    • /
    • 1999
  • The most important question is how to use which kind of switch in pulsed power generation. There are many kinds of commercial closing switches, which have advantages and disadvantages. The most popular closing switch is the spark gap, but it has a disadvantage in life time, because of erosion of electrodes by arc heating. The Rotary Arc Gap (RAG) switch, especially Walkie-Edgar type RAG switch, was proposed to solve such problems in spark gap. It has a simple and special structure for arc moving caused from self-induced electromagnetic force, because moving arc makes less erosion on the electrodes. In this study we have made an Walkie-Edgar type RAG switch, tested the switching with capacitive energy storage system, and measured rotating arc speed in different peak current.

  • PDF

Fabrication of the accelerometer using the nano-gap trench etching (나노갭 트렌치 공정을 이용한 가속도센서 제작)

  • Kim, Hyeon-Cheol;Kwon, Hee-jun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.2
    • /
    • pp.155-161
    • /
    • 2016
  • This paper proposes a novel fabrication method for a capacitive type micro-accelerometer with uniform nano-gap using photo-assisted electro-chemical etching. The sensitivity of the accelerometer should be improved while the electrodes between the inertial mass and the sensing comb should be narrowed. In this paper the nano-gap trench structure is fabricated using the photo-assisted electrochemical etching method. The sensor was designed and analysed using ANSYS simulator. The characteristics of the etching were observed according to the dc bias, the light intensity, the composition of the solution, the temperature of the solution, and the pattern pitch variation. The optimum etching conditions were dc bias of 2V, Blue LED of 20mA, 49wt% HF:DMF:D.I.Water=1:20:10, the pattern pitch of $20{\mu}m$. Uniform trench structure with width of 344nm and depth of $11.627{\mu}m$ are formed using the optimum condition.

Investigation of Spatial Distribution of Plasma Density between the Electrode and Lateral Wall of Narrow-gap CCP Source (좁은 간격 CCP 전원의 전극과 측면 벽 사이 플라즈마 분포)

  • Choi, Myung-Sun;Jang, Yunchang;Lee, Seok-Hwan;Kim, Gon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.1-5
    • /
    • 2014
  • The plasma density distribution in between the electrode and lateral wall of a narrow gap CCP was investigated. The plasma density distribution was obtained using single Langmuir probe, having two peaks of density distribution at the center of electrode and at the peripheral area of electrodes. The plasma density distribution was compared with the RF fluctuation of plasma potential taken from capacitive probe. Ionization reactions obtained from numerical analysis using CFD-$ACE^+$ fluid model based code. The peaks in two region for plasma density and voltage fluctuation have similar spatial distribution according to input power. It was found that plasma density distribution between the electrode and the lateral wall is closely related with the local ionization.

Optimal Cylindrical Capacitive Sensor(CCS) taking into account the Circumferential Gaps between Sensor Electrodes (센서 전극 사이의 간극을 고려한 최적의 정전용량 센서)

  • Ahn, Hyeong-Joon;Park, Jong-Min;Han, Dong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.613-618
    • /
    • 2004
  • CCS was developed and applied to rotating machines because of accurately measuring the spindle error motion without significant efforts. However, researches on the CCS have been focused on ideal cases where circumferential gaps were ignored. This paper presents the effects of circumferential gaps and proposes an optimal CCS considering the circumferential gaps. First, electrostatic analysis of the CCS that includes the circumferential gaps is performed using the FEM, and an additional capacitance due to the circumferential gap can be approximated as an equivalent extended sensor length. Second, a mathematical model of the CCS considering the circumferential gaps is derived, and the optimal CCS is determined through minimization of the weighted error amplification factor. Finally, two CCSs, both considering and ignoring the circumferential gaps, are built, and the effectiveness of the optimal design is verified through simulation and experiment.

  • PDF

Development of Sensor for Magnetically Levitated High Speed Spindle System (자기 부상 고속 주축계의 센서 개발)

  • Shin, Woo-Cheol;Lee, Dong-Ju;Hong, Jun-Hee;Noh, Myoung-Gyu
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.987-992
    • /
    • 2000
  • In a high speed spindle system, it is very important to monitor the operation of the spindle to prevent catastrophic damage to the system. Widely used sensors for monitoring are eddy-current and capacitive types. These sensors provide high accuracy of monitoring, but their steep prices lead to expensive high speed spindle systems. The main goal of our research is to develop technology for producing high speed spindle system utilizing magnetic bearings. As active magnetic bearings require position sensors for feedback control, a noncontact position sensor is being developed as a part of this main goal. Once developed, it will contribute to affordable high speed spindle system. This paper describes the selection process of the sensor types and the design of the driving circuit. We also report the experimental results that characterize the static and dynamic performances of the inductive sensor.

  • PDF

Development of Inductive Sensor in Magnetic Bearing Spindle System (자기 베어링 주축시스템의 유도형 센서 개발)

  • Shin, Woo-Cheol;Lee, Dong-Ju;Hong, Jun-Hee;Noh, Myoung-Gyu
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.32-37
    • /
    • 2000
  • In a high speed spindle system, it is very important to monitor the operation of the spindle to prevent catastrophic damage to the system. Widely used sensors for monitoring are eddy-current and capacitive types. These sensors provide high accuracy of monitoring, but their steep prices lead to expensive high speed spindle system. The main god of our research is to develop technology to produce high speed spindle system utilizing magnetic bearings. As active magnetic bearings require position sensors for feedback control, a noncontact position sensor is bang developed as a part of this main goal. Once developed, it will contribute to affordable high speed spindle system. In this paper, we report the selection process of the sensor types and the experimental results with driving circuits.

  • PDF

An Experimental Study on the Ignition Characteristic of Ignition Plug (점화플러그의 점화특성에 관한 실험적 연구)

  • Sim, Sang-Cherl;Cho, Tae-Young;Jung, Byoung-Koog;Song, Kyu-Keun;Jung, Jea-Youn;Kim, Hyung-Gon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2088-2093
    • /
    • 2004
  • Harmful elements from the exhaust gases are caused by incomplete combustion of mixture inside the engine cylinder and this abnormal combustion like misfire or partial burning is the direct cause of the air pollution and engine performance degradation. In this study, I obtain the shapes of spark, voltage and current generated when changing the experimental parameters such as grounded electrode shapes, electrode gap and the material of center electrodes. After that, I produce ignition energy by using the voltage and current and classify ignition energy into capacitive discharge energy and inductive discharge energy.

  • PDF

Power Loss Calculation of High Frequency Transformers

  • Choi Geun-Soo;Yoon Shin-Yong;Baek Soo-Hyun;Kim Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.338-342
    • /
    • 2006
  • This paper analyzed the power loss of transformers considering the magnetic component. For this, each winding strategy and the effect of air gap between the ferrite core have been an important variable for optimal parameter calculation. Inductors are very well known design rules to devise, but the performance of the flyback converter as a function of transformer winding strategy has not been fully developed. The transformer analysis tool used was PExpert. The influence of the insulator thickness, effect of the air gap, how the window height and variation of the capacitive value effects the coil and insulator materials are some of parameters that have been analyzed in this work. The parameter analysis is calculated to a high frequency of 48[kHz]. Therefore, the final goal of this paper was to calculate and adjust the parameters according to the method of winding array and air gap minimizing the power loss.

An Inset-Fed Microstrip Patch Antenna Having Modified Feeding Structure in the S-Band (급전구조를 변형한 5-Band용 INSET-FED 마이크로스트립 패치 안테나)

  • 정동근;이석문;하천수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.6
    • /
    • pp.897-903
    • /
    • 2002
  • In this paper, a modified feeding structure for microstrip patch antenna is suggested for improving the performances. The proposed antenna has a gap between the transmission line and the recessed part of the radiating patch which makes a capacitive coupling. It shows higher 511(-l4dB) and lower cross polarization level(-2OdB) compare with the conventional inset ftd patch antenna while having a similar characteristics in another evaluating items. Experimental results are examined and considered to apply to the S-Band application, and the effectiveness has been confirmed by FDTD simulation and measurement simultaneously.