• Title/Summary/Keyword: Capability of Interface

Search Result 358, Processing Time 0.025 seconds

Two Design Techniques of Embedded Systems Based on Ad-Hoc Network for Wireless Image Observation (애드 혹 네트워크 기반의 무선 영상 관측용 임베디드 시스템의 두 가지 설계 기법들)

  • LEE, Yong Up;Song, Chang-Yeoung;Park, Jeong-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.5
    • /
    • pp.271-279
    • /
    • 2014
  • In this paper, the two design techniques of the embedded system which provides a wireless image observation with temporary ad-hoc network are proposed and developed. The first method is based on the embedded system design technique for a nearly real-time wireless short observation application, having a specific remote monitoring node with a built-in image processing function, and having the maximum rate of 1 fps (frame per second) wireless image transmission capability of a $160{\times}128$size image. The second technique uses the embedded system for a general wireless long observation application, consisting of the main node, the remote monitoring node, and the system controller with built-in image processing function, and the capability of the wireless image transmission rate of 1/3 fps. The proposed system uses the wireless ad-hoc network which is widely accepted as a short range, low power, and bidirectional digital communication, the hardware are consisted of the general developed modules, a small digital camera, and a PC, and the embedded software based upon the Zigbee stack and the user interface software are developed and tested on the implemented module. The wireless environment analysis and the performance results are presented.

The Proposal and Implementation of Wireless Smart Sensor Node and NCAP System based on the IEEE 1451 (IEEE 1451 기반의 Wireless Smart Sensor Node와 NCAP 시스템의 제안과 구현)

  • Heo, Jung-Il;Lim, Su-Young;Seo, Jung-Ho;Kim, Woo-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.5
    • /
    • pp.28-37
    • /
    • 2007
  • IEEE 1451 standard defines an interface for network and transducer. In this paper, We propose an architectural model to configure data acquisition system and wireless smart sensor node based on IEEE 1451 standard. Proposed Network Capable Application Processor(NCAP) supports the task of data acquisition and communication for smart sensor node and network. The NCAP is able to reconfigure without interrupting the functionality of the wireless sensor node and receives the critical information of transducer using the DB. Smart sensor node is able to provide the basic information of sensor in digital format. This digital format is called Transducer Electronic Data Sheet(TEDS), is capable of plug-and-play capability of wireless sensor node and the NCAP. We simplify the format of TEDS and template to apply to wireless network environment. information of TEDS and template is transmitted using ad-hoc routing. This study system uses body temperature sensor and ECG(Electrocardiogram) sensor to provide the medical information service. The format of template is selected by data sheet of the sensor and reconfigured to accurately describe the property of the sensor. DB of NCAP is possible to register new template and information of the property as developing new sensor.

Design and Experiments of Pneumatic Tactile Display for Haptic Interaction (햅틱 인터렉션을 위한 공기촉감 제시장치의 개발 및 실험 - 손끝 부착 형 공기촉감 제시장치의 개발 및 심리 물리학적 실험 -)

  • Kim, Yeong-Mi;Oakley, Ian;Ryu, Je-Ha
    • Journal of the HCI Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.19-26
    • /
    • 2006
  • This paper presents a novel pneumatic tactile display that can deliver some useful information. The air-jet display forms 5 by 5 arrays and features air nozzles with an external diameter of 2.4mm and internal diameter of 1.5 mm. In comparison with other tactile displays such as vibrotactile, there is little concrete psychophysical data relating to pneumatic displays, a fact which hinders their adoption. This paper addresses this challenge, and presents brief psychophysical studies examining localization rate, the two point threshold, stimulus intensity and the temporal threshold of cues produced by pneumatic air jets. Two groups of subjects were used in these studies, subsequently termed groups A and B. Both were comprised of eight participants. In the case of localization study we obtained 58.13% and 85.9% of localization rates each for dense display and sparse display. Two-points threshold test showed the length of gap between two air-jet stimuli which subjects can detect. However, it was formidable to find out precise temporal resolution of PTI owing to the limitation of capability of the pneumatic valves. Lastly, the results of stimulus intensity study suggest that by varying the size of a pneumatically created tactile stimulus, we can effectively vary its perceived magnitude.

  • PDF

Bicycle Riding-State Recognition Using 3-Axis Accelerometer (3축 가속도센서를 이용한 자전거의 주행 상황 인식 기술 개발)

  • Choi, Jung-Hwan;Yang, Yoon-Seok;Ru, Mun-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.6
    • /
    • pp.63-70
    • /
    • 2011
  • A bicycle is different from vehicles in the structure that a rider is fully exposed to the surrounding environment. Therefore, it needs to make use of prior information about local weather, air quality, trail road condition. Moreover, since it depends on human power for moving, it should acquire route property such as hill slope, winding, and road surface to improve its efficiency in everyday use. Recent mobile applications which are to be used during bicycle riding let us aware of the necessity of development of intelligent bicycles. This study aims to develop a riding state (up-hill, down-hill, accelerating, braking) recognition algorithm using a low-power wrist watch type embedded system which has 3-axis accelerometer and wireless communication capability. The developed algorithm was applied to 19 experimental riding data and showed more than 95% of correct recognition over 83.3% of the total dataset. The altitude and temperature sensor also in the embedded system mounted on the bicycle is being used to improve the accuracy of the algorithm. The developed riding state recognition algorithm is expected to be a platform technology for intelligent bicycle interface system.

Testing and Numerical Analysis on the Fracture Characteristics of Composite Adhesive Bonded Single-Lap Joints (복합재료 Single-Lap 본딩 조인트의 파괴 특성에 대한 실험 및 수치해석 연구)

  • 김광수;박재성;장영순;이영무
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.45-53
    • /
    • 2003
  • The experimental and numerical investigations on the failure characteristics of the secondary bonded composite single-lap joints were performed. The initiations and growths of cracks were observed using CCD camera and acoustic emission sensor during the tension tests of the joint specimens. The structural behaviors of the specimens were predicted by the geometric nonlinear two-dimensional finite element analysis. The three types of observed initial cracks were included in each finite element models and the strain energy release rates of each specimen models were calculated by VCCT(Virtual Crack Closure Technique) technique. The tension tests showed that the initial cracks occurred in the 60∼90% of final failure loads and the major failure modes of the specimens were adhesive failure and the delamination between the 1st and 2nd ply of laminate. The specimens with the thicker bondline had earlier crack initiation loads but higher crack propagation resistance and eventually better loading capability. The delaminations were mostly observed in the thicker bondline specimens. The mode I values of calculated strain energy release rates were higher than the mode II values in the all specimen models considering the three types of initial cracks. The mode I and total strain energy release rates were calculated as higher values in the order of initial crack in the edge interface, comer interface and delamination between the plies of laminate.

Perfomance Analysis for the IPC Interface Part in a Distributed ATM Switching Control System (분산 ATM 교환제어시스템에서 프로세서간 통신 정합부에 대한 성능 분석)

  • Yeo, Hwan-Geun;Song, Kwang-Suk;Ro, Soong-Hwan;Ki, Jang-Geun
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.6
    • /
    • pp.25-35
    • /
    • 1998
  • The control system architecture in switching systems have undergone numerous changes to provide various call processing capability needed in telecommunication services. During call processing in a distributed switching control environment, the delay effect due to communication among main processors or peripheral controllers is one of the limiting factors which affect the system performance. In this paper, we propose a performance model for an IPC(Inter Processor Communication) interface hardware block which is required on the ATM cell-based message processing in a distributed ATM exchange system, and analyze the primary causes which affect the processor performance through the simulation. Consequently, It can be shown that the local CPU of the several components(resources) related to the IPC scheme is a bottleneck factor in achieving the maximum system performance from the simulation results, such as the utilization of each processing component according to the change of the input message rate, and the queue length and processing delay according to input message rate. And we also give some useful results such as the maximum message processing capacity according to the change of the performance of local CPU, and the local CPU maximum throughput according to the change of average message length, which is applicable as a reference data for the improvement or expansion of the ATM control system.

  • PDF

Acceleration of Anisotropic Elastic Reverse-time Migration with GPUs (GPU를 이용한 이방성 탄성 거꿀 참반사 보정의 계산가속)

  • Choi, Hyungwook;Seol, Soon Jee;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.2
    • /
    • pp.74-84
    • /
    • 2015
  • To yield physically meaningful images through elastic reverse-time migration, the wavefield separation which extracts P- and S-waves from reconstructed vector wavefields by using elastic wave equation is prerequisite. For expanding the application of the elastic reverse-time migration to anisotropic media, not only the anisotropic modelling algorithm but also the anisotropic wavefield separation is essential. The anisotropic wavefield separation which uses pseudo-derivative filters determined according to vertical velocities and anisotropic parameters of elastic media differs from the Helmholtz decomposition which is conventionally used for the isotropic wavefield separation. Since applying these pseudo-derivative filter consumes high computational costs, we have developed the efficient anisotropic wavefield separation algorithm which has capability of parallel computing by using GPUs (Graphic Processing Units). In addition, the highly efficient anisotropic elastic reverse-time migration algorithm using MPI (Message-Passing Interface) and incorporating the developed anisotropic wavefield separation algorithm with GPUs has been developed. To verify the efficiency and the validity of the developed anisotropic elastic reverse-time migration algorithm, a VTI elastic model based on Marmousi-II was built. A synthetic multicomponent seismic data set was created using this VTI elastic model. The computational speed of migration was dramatically enhanced by using GPUs and MPI and the accuracy of image was also improved because of the adoption of the anisotropic wavefield separation.

An XML based Mobile Information Visualization System for Mobile Devices using Information layout Techniques (Rectangle Layout을 이용한 XML 기반 모바일 정보 시각화 시스템)

  • Yoo Hee-Yong;Cheon Suh-Hyun
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.9
    • /
    • pp.776-786
    • /
    • 2006
  • This paper proposes XML based mobile information visualization system using rectangle layout to show effectively XML based information to user on mobile devices which do not have a rich display feature. We define XML schema that can describes information in graph with cycle as well as information in tree form. It suggests using rectangle layout method that is an improvement of the traditional method of the radial layout because the specificity of the mobile display should be considered when XML information is rendered on the screen. And then, it applies DOI of fisheye view algorithm to information on the rectangle layout to represent all and user interest information. And it also suggests an effective method considering capability of mobile devices to decrease user's confusion and improve awareness of user when a user Interest target selected. The proposed information visualization system in the form of focus+context supports an effective interface for information retrieval via mobile devices, such as PDA, cellular phone and smart phone, that usually have less power of CPU than that of PC and the constraints of display and memory. In this paper, it performs experiments and makes an evaluation comparing information visualization method between the traditional radial layout and the proposed rectangle layout.

Parallel Flood Inundation Analysis using MPI Technique (MPI 기법을 이용한 병렬 홍수침수해석)

  • Park, Jae Hong
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1051-1060
    • /
    • 2014
  • This study is attempted to realize an improved computation performance by combining the MPI (Message Passing Interface) Technique, a standard model of the parallel programming in the distributed memory environment, with the DHM(Diffusion Hydrodynamic Model), a inundation analysis model. With parallelizing inundation model, it compared with the existing calculation method about the results of applications to complicate and required long computing time problems. In addition, it attempted to prove the capability to estimate inundation extent, depth and speed-up computing time due to the flooding in protected lowlands and to validate the applicability of the parallel model to the actual flooding analysis by simulating based on various inundation scenarios. To verify the model developed in this study, it was applied to a hypothetical two-dimensional protected land and a real flooding case, and then actually verified the applicability of this model. As a result of this application, this model shows that the improvement effectiveness of calculation time is better up to the maximum of about 41% to 48% in using multi cores than a single core based on the same accuracy. The flood analysis model using the parallel technique in this study can be used for calculating flooding water depth, flooding areas, propagation speed of flooding waves, etc. with a shorter runtime with applying multi cores, and is expected to be actually used for promptly predicting real time flood forecasting and for drawing flood risk maps etc.

Effect of soil pile structure interaction on dynamic characteristics of jacket type offshore platforms

  • Asgarian, Behrouz;Shokrgozar, Hamed Rahman;Shahcheraghi, Davoud;Ghasemzadeh, Hasan
    • Coupled systems mechanics
    • /
    • v.1 no.4
    • /
    • pp.381-395
    • /
    • 2012
  • Dynamic response of Pile Supported Structures is highly depended on Soil Pile Structure Interaction. In this paper, by comparison of experimental and numerical dynamic responses of a prototype jacket offshore platform for both hinge based and pile supported boundary conditions, effect of soil-pile-structure interaction on dynamic characteristics of this platform is studied. Jacket and deck of a prototype platform is installed on a hinge-based case first and then platform is installed on eight skirt piles embedded on continuum monolayer sand. Dynamic characteristics of platform in term of natural frequencies, mode shapes and modal damping are compared for both cases. Effects of adding and removing vertical bracing members in top bay of jacket on dynamic characteristics of platform for both boundary conditions are also studied. Numerical simulation of responses for the studied platform is also performed for both mentioned cases using capability of ABAQUS and SACS software. The 3D model using ABAQUS software is created using solid elements for soil and beam elements for jacket, deck and pile members. Mohr-Coulomb failure criterion and pile-soil interface element are used for considering nonlinear pile soil structure interaction. Simplified modeling of soil-pile-structure interaction effect is also studied using SACS software. It is observed that dynamic characteristics of the system changes significantly due to soil-pile-structure interaction. Meanwhile, both of complex and simplified (ABAQUS and SACS, respectively) models can predict this effect accurately for such platforms subjected to dynamic loading in small range of deformation.