• Title/Summary/Keyword: Cap-pile-soil

Search Result 73, Processing Time 0.022 seconds

Study on Settlement Calculation of the Long-Short Pile Composite Foundation

  • XU, Xin;Kwag, Yunehyeong;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.7
    • /
    • pp.13-18
    • /
    • 2013
  • As a new foundation treatment technology, long-short pile composite's design theory is still in primary phase, and there are no explicit settlement calculation methods in active codes. So it is necessary to study the working mechanism and the methods of settlement calculation. In this paper, the mechanics of long-short pile composite foundation are fully discussed. Meanwhile, based on the shear deformation method, the Mylonakis & Gazetas models about mutual action between two piles and the one between pile and soil are introduced, Considering the performance of cushion, the flexible factors of mutual actions are provided. Then the settlement calculation of long-short pile composite foundation which can consider the mutual actions between pile, soil and cap is deduced, and the correlated program is also developed. Finally, an engineering example is discussed with the method. A comparison shows that calculated results and measured data from a field test pile are in a good agreement, indicating that the presented approach is feasible and applicable in engineering practice.

Numerical Analysis of Thermal Effect on Axial Load and Pile Settlements in PHC Energy Piles (PHC 에너지파일의 열응력에 따른 축하중-침하 수치해석)

  • Lee, Dae-Soo;Min, Hye-Sun;Lim, Hyun-Sung;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.5
    • /
    • pp.5-17
    • /
    • 2013
  • This study investigates the effect of thermal stress on axial load and pile settlement of PHC energy piles. A series of numerical analyses were performed by controlling major influencing parameters such as pile arrangement, pile spacing, end-bearing condition, soil condition and pile cap stiffness. It is found that the characteristics of pile-load transfer are significantly affected by seasonal operation mode (i.e., cooling and heating) throughout the year. Also, the axial load under thermal loading increases with increasing the pile spacing. The settlement of the pile in sand is larger than that in clay because of the thermal stress generated. It is also found that thermal stress highly influences on the end-bearing pile, corner pile and rigidity of pile cap.

Wave Propagation Analysis for Pile-Slab Section on High Speed Railway (고속철도 파일슬래브공법 적용구간에서의 파전파해석)

  • Lee, Kang-Myung;Lee, Il-Wha
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3201-3207
    • /
    • 2011
  • This paper reviewed wave propagation of train vibration based on the study of high speed railway soft ground section with pile slab construction. In a filed of railway, concrete track has been adapted in a railway construction. And in order to maintain its track, soil improving method was required to control residual settlement. Within many soft ground settlement prevention techniques, pile slab method has an effect of minimizing residual settlement of soft ground. This is possible using support embankment load method by construct pile slab or cap the upper soft ground. This paper reviewed vibration wave characteristic of soft ground section with pile slab using numerical analysis application through finite element analysis. Pile slab method is established between high stiffened soft ground and embankment this creates a possibility of vibration block or slab amplification. Thus analyzed of wave propagation was done with roadbed and structure property to confirm application performance of pile slab method of high speed railway structure.

  • PDF

Analysis of Dynamic Behavior of a Single Pile in Dry Sand by 1g Shaking Table Tests (1g 진동대 실험을 통한 건조사질토에 근입된 단독말뚝의 동적 거동 분석)

  • Lim, Hyun-Sung;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.7
    • /
    • pp.17-28
    • /
    • 2017
  • This paper presents the investigation of dynamic behavior of a single pile in dry sand based on 1g shaking table tests. The natural frequency of soil-pile system was measured, and then a range of loading frequency was determined based on the natural frequency. Additionally, the studies were performed by controlling loading accelerations, pile head mass and connectivity conditions between pile and cap. Based on the results obtained, relatively larger pile head displacement and bending moment occur when the loading frequency is larger than the natural frequency of soil-pile system. However, the slope of the p-y curve is smaller in the similar loading frequency. Also, it was found that inertia force like input acceleration and pile head mass, and relation of the natural frequency of soil-pile system and input frequency have a great influence on the slope of dynamic p-y curve, while pile head conditions don't.

Interaction Factors of One-Row Pile Groups Subjected to Lateral Soil Movements (측방 유동을 받는 일렬 군말뚝의 상호 작용 계수)

  • Jeong, Snag-Seom;Kim, Byung-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.3
    • /
    • pp.157-162
    • /
    • 2000
  • 측발유동을 받는 일렬 군말뚝의 그룹효과를 파악하이 위해 3차원 유한요소해석을 수행하였다. 국내의 대표적인 화강풍화토 지반에 선단지지된 말뚝을 대상으로 측방으로 지반변위 발생시 말뚝 두부조건과 중심간격(2.5D, 5.0D, 7.0D, 단독말뚝) 및 말뚝주면의 접촉효과를 고려한 군말뚝의 상호작용계수를 산정하였다. 본 연구 결과, 단독말뚝과 비교하여 군말뚝의 간격이 좁아짐에 따라 상호작용계수는 현저하게 감소하였으며 말뚝 두부조건이 회전구속, 힌지,자유단의 순으로 감소정도가 크게 나타났다. 이는 실내모형실험을 통해 산정된 상호작용계수와도 비교적 잘 일치함을 보였다.

  • PDF

Evaluations of a Seismic Performance of Geosynthetic-Reinforced Embankment Supporting Piles for a Ultra Soft Ground (침하 억제를 위하여 초연약지반에 설치된 섬유보강 성토지지말뚝의 내진성능 평가)

  • Lee, Il-Wha;Kang, Tae-Ho;Lee, Su-Hyung;Lee, Sung-Jin;Bang, Eui-Seok
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.918-927
    • /
    • 2008
  • The problems associated with constructing high-speed concrete track embankments over soft compressible soil has lead to the development and/or extensive use of many of the ground improvement techniques used today. Drains, surcharge loading, and geosynthetic reinforcement, have all been used to solve the settlement and embankment stability issues associated with construction on soft soils. Geosynthetic-reinforced embankment supporting piles method consist of vertical columns that are designed to transfer the load of the embankment through the soft compressible soil layer to a firm foundation and one or more layers of geosynthetic reinforcement placed between the top of the columns and the bottom of the embankment. In the paper, the evaluations of a seismic performance of geosynthetic-reinforced embankment piles for a ultra soft ground during earthquake were studied. the equivalent linear analysis was performed by SHAKE for soft ground. A seismic performance analysis of Piles was performed by GROUP PILE and PLAXIS for geosynthetic-reinforced embankment piles. Guidelines is required for pile displacement during earthquake. Conclusions of the studies come up with a idea for soil stiffness, conditions of pile cap, pile length and span.

  • PDF

Estimation Method of Earth Pressures Acting on a Row of Piles due to Lateral Soil Movements (측방변형지반속 줄말뚝에 작용하는 토압의 산정법)

  • 홍원표;송영석
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.13-22
    • /
    • 2004
  • In case of the lateral movement accurring at soft ground where a row of piles are installed, the crown failure at external arch zone of soil arching is firstly developed, and the cap failure at wedge zone in front of piles is lastly developed. Therefore, the lateral earth pressure acting on a row of piles due to soil movement should be calculated in each condition of crown and cap failures around piles. A theoretical equation of crown failure can be proposed using a cylindrical cavity expansion theory. The theoretical equation of crown failure is mainly affected by two factors. One is related to soil properties such as internal friction angle, cohesion and horizontal pressure, and the other is related to pile factors such as diameter, installation interval. Meanwhile, the yield range of lateral earth pressure is established in the estimation of theoretical equation based on crown and cap failures around piles. The theoretical values based on crown and cap failures are compared with the experimental values. The experimental values are located in the range proposed by theoretical values. Thus, it is confirmed that the theoretical values proposed in the study are very reasonable.

Theoretical Analysis of Embankment Loads Acting on Piles (성토지지말뚝에 작용하는 연직하중의 이론해석)

  • 홍원표;이재호;전성권
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.131-143
    • /
    • 2000
  • Several theoretical analyses are performed to predict the vertical load on embankment piles with cap beams. The piles are installed in a row in soft ground below the embankment and the cap beams are placed perpendicular to the longitudinal axis of the embankment. Two failure mechanisms such as the soil arching failure and the punching shear failure are investigated according to the failure pattern in embankment on soft ground supported by piles with cap beams. The soil arching can be developed when the space between cap beams is narrow and/or the embankment is high enough. In the investigation of the soil arching failure, the stability in the crown of the arch is compared with that above the cap beams. The factors affecting the load transfer in the embankment fill by soil arching are the space between cap beams, the width of cap beams and the soil parameters of the embankment fill. The portion of the embankment load carried by cap beams decreases with increment of the space between cap beams, while it increases with the embankment height, the width of cap beams, the internal friction angle and cohesion of the embankment fill. Thus, the factors affecting load transfer in embankment should be appropriately decided in order to maximize the effect of embankment load transfer by piles.

  • PDF

A study on the effect of the pile tip deformations on the pile behaviour to shield TBM tunnelling (Shield TBM 터널시공으로 유발된 말뚝선단의 변형이 말뚝거동에 미치는 영향에 대한 연구)

  • Young-Jin Jeon;Byung-Soo Park;Young-Nam Choi;Cheol-Ju Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.169-189
    • /
    • 2024
  • In the current work, a series of three-dimensional finite element analyses have been carried out to understand the behaviour of pre-existing single piles and pile groups to adjacent Shield TBM tunnelling by considering various reinforcement conditions. The numerical modelling has analysed the effect of the pile cutting, ground reinforcement and pile cap reinforcement. The analyses concentrate on the ground settlements, the pile head settlements, the axial pile forces and the shear stress transfer mechanism at the pile-soil interface. In all cases of the pile tips supported by weathered rock, the distributions of shear stresses presented a similar trend. Also, when the pile tips were cut, tensile forces or compressive forces were induced on the piles depending on the relative positions of the piles. Furthermore, when the pile tips are supported by weathered rock, approximately 70% of the load is supported by surface friction, and only the remaining 30% is supported by the pile tip. Furthermore the final settlement of the piles without reinforcement showed approximately 70% more settlement than the piles for which ground reinforcement is considered. It has been found that the ground settlements and the pile settlements are heavily affected by the pile cutting and reinforcement conditions. The behaviour of the single pile and group piles, depending on the pile cutting, conditions of ground and pile cap reinforcement, has been extensively examined and analysed by considering the key features in great details.

Shaft Group Efficiency of Friction Pile Groups in Deep Soft Clay (대심도 마찰무리말뚝의 주면 무리효율 분석)

  • Paek, Jin-Yeol;Cho, Jae-Yeon;Jeong, Sang-Seom;Hwang, Taik-Jean
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2C
    • /
    • pp.49-60
    • /
    • 2012
  • In this study, the behaviors of friction pile groups are investigated using 3D finite element (FE) analysis. The emphasis was quantifying on the shear load transfer (f-w) characteristics of pile groups and the shaft group effects. A framework for determining the f-w curve is proposed based on both theoretical analysis and field load test database. Through comparisons with case histories and FE results, it is shown that the proposed f-w curve is capable of predicting the behavior of a friction pile in deep soft clay. Additionally, a numerical analysis that takes into account the group efficiency factors were performed for major parameter on group pile-soil interaction, such as the pile spacing, pile arrangement, soil condition, and location of pile cap. Based on these results, the shaft group efficiency factors were also proposed.