• 제목/요약/키워드: Canton

검색결과 38건 처리시간 0.024초

Epidemiological Features of Human Cases After Bites/Scratches From Rabies-suspected Animals in Zenica-Doboj Canton, Bosnia and Herzegovina

  • Uzunovic, Selma;Skomorac, Muhamed;Basic, Fatima;Mijac-Music, Ivona
    • Journal of Preventive Medicine and Public Health
    • /
    • 제52권3호
    • /
    • pp.170-178
    • /
    • 2019
  • Objectives: To determine the epidemiological features of patients and animals after bites/scratches from rabies-suspected animals in Zenica-Doboj Canton, Bosnia and Herzegovina. Methods: Data from all patients (and the causative animals) admitted to the Antirabies Service of the Institute for Health and Food Safety Zenica in the 2009-2017 period were analyzed, including age, sex, anatomical site of the bite/scratch, animal type (stray/owned/wildlife), veterinary observations of the animal, and whether antirabies post-exposure prophylaxis (PEP) was indicated and/or administered. Results: In total, 1716 patients were admitted. Bites/scratches were most frequently recorded during April and May (n=181, 10.5% and n=163, 9.5%, respectively). The persons admitted were mostly from the Zenica municipality (n=1278, 74.5%; incidence: 11.55/1000), which is 66.6% urbanized. Males were more frequently represented (n=1089, 63.6%). The patients were mostly 50-64 and 25-49 years of age (n=425, 24.7% and n=390, 22.7%, respectively). Dog bites were the most common cause (n=1634, 95.1%, of which n=1258, 77.0% were caused by stray dogs). PEP was indicated for 997 (58.1%) patients. Only 340 (19.9%) animals underwent veterinary observations (3.1% of stray and 76.1% of owned animals). The largest number of injuries were presented at lower extremities, 1044 (60.8%) cases. Conclusions: Zenica-Doboj Canton is a rabies-free region. Due to the high rate of stray animals not undergoing veterinary observations, the non-existence of a unique dog registry, and the consequent lack of information about stray animals in terms of number, vaccination, neutering, and euthanasia, there is an urgent need for improving the prevention and control of rabies within the One Health framework.

Mode shape expansion with consideration of analytical modelling errors and modal measurement uncertainty

  • Chen, Hua-Peng;Tee, Kong Fah;Ni, Yi-Qing
    • Smart Structures and Systems
    • /
    • 제10권4_5호
    • /
    • pp.485-499
    • /
    • 2012
  • Mode shape expansion is useful in structural dynamic studies such as vibration based structural health monitoring; however most existing expansion methods can not consider the modelling errors in the finite element model and the measurement uncertainty in the modal properties identified from vibration data. This paper presents a reliable approach for expanding mode shapes with consideration of both the errors in analytical model and noise in measured modal data. The proposed approach takes the perturbed force as an unknown vector that contains the discrepancies in structural parameters between the analytical model and tested structure. A regularisation algorithm based on the Tikhonov solution incorporating the L-curve criterion is adopted to reduce the influence of measurement uncertainties and to produce smooth and optimised expansion estimates in the least squares sense. The Canton Tower benchmark problem established by the Hong Kong Polytechnic University is then utilised to demonstrate the applicability of the proposed expansion approach to the actual structure. The results from the benchmark problem studies show that the proposed approach can provide reliable predictions of mode shape expansion using only limited information on the operational modal data identified from the recorded ambient vibration measurements.

Updating finite element model using dynamic perturbation method and regularization algorithm

  • Chen, Hua-Peng;Huang, Tian-Li
    • Smart Structures and Systems
    • /
    • 제10권4_5호
    • /
    • pp.427-442
    • /
    • 2012
  • An effective approach for updating finite element model is presented which can provide reliable estimates for structural updating parameters from identified operational modal data. On the basis of the dynamic perturbation method, an exact relationship between the perturbation of structural parameters such as stiffness change and the modal properties of the tested structure is developed. An iterative solution procedure is then provided to solve for the structural updating parameters that characterise the modifications of structural parameters at element level, giving optimised solutions in the least squares sense without requiring an optimisation method. A regularization algorithm based on the Tikhonov solution incorporating the generalised cross-validation method is employed to reduce the influence of measurement errors in vibration modal data and then to produce stable and reasonable solutions for the structural updating parameters. The Canton Tower benchmark problem established by the Hong Kong Polytechnic University is employed to demonstrate the effectiveness and applicability of the proposed model updating technique. The results from the benchmark problem studies show that the proposed technique can successfully adjust the reduced finite element model of the structure using only limited number of frequencies identified from the recorded ambient vibration measurements.

Update the finite element model of Canton Tower based on direct matrix updating with incomplete modal data

  • Lei, Y.;Wang, H.F.;Shen, W.A.
    • Smart Structures and Systems
    • /
    • 제10권4_5호
    • /
    • pp.471-483
    • /
    • 2012
  • In this paper, the structural health monitoring (SHM) benchmark problem of the Canton tower is studied. Based on the field monitoring data from the 20 accelerometers deployed on the tower, some modal frequencies and mode shapes at measured degrees of freedom of the tower are identified. Then, these identified incomplete modal data are used to update the reduced finite element (FE) model of the tower by a novel algorithm. The proposed algorithm avoids the problem of subjective selection of updated parameters and directly updates model stiffness matrix without model reduction or modal expansion approach. Only the eigenvalues and eigenvectors of the normal finite element models corresponding to the measured modes are needed in the computation procedures. The updated model not only possesses the measured modal frequencies and mode shapes but also preserves the modal frequencies and modes shapes in their normal values for the unobserved modes. Updating results including the natural frequencies and mode shapes are compared with the experimental ones to evaluate the proposed algorithm. Also, dynamic responses estimated from the updated FE model using remote senor locations are compared with the measurement ones to validate the convergence of the updated model.

Structural health monitoring of Canton Tower using Bayesian framework

  • Kuok, Sin-Chi;Yuen, Ka-Veng
    • Smart Structures and Systems
    • /
    • 제10권4_5호
    • /
    • pp.375-391
    • /
    • 2012
  • This paper reports the structural health monitoring benchmark study results for the Canton Tower using Bayesian methods. In this study, output-only modal identification and finite element model updating are considered using a given set of structural acceleration measurements and the corresponding ambient conditions of 24 hours. In the first stage, the Bayesian spectral density approach is used for output-only modal identification with the acceleration time histories as the excitation to the tower is unknown. The modal parameters and the associated uncertainty can be estimated through Bayesian inference. Uncertainty quantification is important for determination of statistically significant change of the modal parameters and for weighting assignment in the subsequent stage of model updating. In the second stage, a Bayesian model updating approach is utilized to update the finite element model of the tower. The uncertain stiffness parameters can be obtained by minimizing an objective function that is a weighted sum of the square of the differences (residuals) between the identified modal parameters and the corresponding values of the model. The weightings distinguish the contribution of different residuals with different uncertain levels. They are obtained using the Bayesian spectral density approach in the first stage. Again, uncertainty of the stiffness parameters can be quantified with Bayesian inference. Finally, this Bayesian framework is applied to the 24-hour field measurements to investigate the variation of the modal and stiffness parameters under changing ambient conditions. Results show that the Bayesian framework successfully achieves the goal of the first task of this benchmark study.

Wind-induced responses and dynamic characteristics of a super-tall building under a typhoon event

  • Hua, X.G.;Xu, K.;Wang, Y.W.;Wen, Q.;Chen, Z.Q.
    • Smart Structures and Systems
    • /
    • 제25권1호
    • /
    • pp.81-96
    • /
    • 2020
  • Wind measurements were made on the Canton Tower at a height of 461 m above ground during the Typhoon Vincente, the wind-induced accelerations and displacements of the tower were recorded as well. Comparisons of measured wind parameters at upper level of atmospheric boundary layer with those adopted in wind tunnel testing were presented. The measured turbulence intensity can be smaller than the design value, indicating that the wind tunnel testing may underestimate the crosswind structural responses for certain lock-in velocity range of vortex shedding. Analyses of peak factors and power spectral density for acceleration response shows that the crosswind responses are a combination of gust-induced buffeting and vortex-induced vibrations in the certain range of wind directions. The identified modal frequencies and mode shapes from acceleration data are found to be in good agreement with existing experimental results and the prediction from the finite element model. The damping ratios increase with amplitude of vibration or equivalently wind velocity which may be attributed to aerodynamic damping. In addition, the natural frequencies determined from the measured displacement are very close to those determined from the acceleration data for the first two modes. Finally, the relation between displacement responses and wind speed/direction was investigated.

Active mass driver control system for suppressing wind-induced vibration of the Canton Tower

  • Xu, Huai-Bing;Zhang, Chun-Wei;Li, Hui;Tan, Ping;Ou, Jin-Ping;Zhou, Fu-Lin
    • Smart Structures and Systems
    • /
    • 제13권2호
    • /
    • pp.281-303
    • /
    • 2014
  • In order to suppress the wind-induced vibrations of the Canton Tower, a pair of active mass driver (AMD) systems has been installed on the top of the main structure. The structural principal directions in which the bending modes of the structure are uncoupled are proposed and verified based on the orthogonal projection approach. For the vibration control design in the principal X direction, the simplified model of the structure is developed based on the finite element model and modified according to the field measurements under wind excitations. The AMD system driven by permanent magnet synchronous linear motors are adopted. The dynamical models of the AMD subsystems are determined according to the open-loop test results by using nonlinear least square fitting method. The continuous variable gain feedback (VGF) control strategy is adopted to make the AMD system adaptive to the variation in the intensity of wind excitations. Finally, the field tests of free vibration control are carried out. The field test results of AMD control show that the damping ratio of the first vibration mode increases up to 11 times of the original value without control.

프랙탈모델을 이용한 심해저 망간단괴의 매장량평가 (Reserve Evaluation of Deep-Sea Manganese Nodules Using Fractal Model)

  • 윤치호;권광수;양승진
    • 자원환경지질
    • /
    • 제28권2호
    • /
    • pp.155-164
    • /
    • 1995
  • The kriging model, one of the geostatistical models, has been used to evaluate the deep-sea manganese nodule deposits until now. The distribution of the manganese nodule deposits estimated by the model shows the smooth surface as well as much difference from the actual distribution. Subsequently, it estimates the deposit distribution roughly in terms of the limited data of surveyed zone. Therefore, this paper presents the interpretation methodology of the deep-sea manganese nodule deposit distribution by using the fractal model to overcome the problems caused by the geostatistical model. Also, the manganese nodule distributions are interpreted by using the manganese nodule data sampled in the GH82-4 zone, west longitude $165^{\circ}40^{\prime}-169^{\circ}00^{\prime}$, and south latitude $0^{\circ}00^{\prime}-2^{\circ}40^{\prime}$ neighboring Nova-Canton Trough in the Pacific Ocean which was surveyed by the Geological Survey of Japan in 1982.

  • PDF

상악 총의치 정중 파절 수리 시 금속선 및 유리섬유의 보강효과 비교 (Comparison of metal wire reinforcement and glass fiber reinforcement in repaired maxillary complete denture)

  • 이정이;조재영;윤미정;전영찬;정창모;허중보
    • 대한치과보철학회지
    • /
    • 제51권4호
    • /
    • pp.284-291
    • /
    • 2013
  • 연구 목적: 상악 레진상 총의치의 정중 파절부에 금속선과 유리섬유 보강재를 사용하여 수리하였을 때 파절 강도 및 파절 양상을 비교해 보고자 하였다. 연구 재료 및 방법: 본 연구에서는 상악 의치의 정중부 파절을 재현한 뒤, 자가중합레진과 보강재를 사용하여 수리하였다. 보강재의 종류에 따라 3개의 군(대조군, 보강재 없음; W 군, 금속선; G 군, 섬유유리)으로 나누었으며, 각군당10개의 시편을 제작하였다. Instron test machine (Instron Co., Canton, MA, USA)으로 5.0 mm/min의 크로스헤드 속도를 부여하여 파절 강도를 구하였으며, 이때 하중은 20 mm의 지름을 가진 구형 하중체를 통해 의치 중심부에 전달되었다. 파절 강도 시험 후 나타난 의치의 파절 양상을 분석하였다. Kruskal-wallis test와 Mann-whitney U test를 이용하여 ${\alpha}=.05$ 수준에서 검정하였다. 결과: 파절 강도는W 군에서 가장 높은 값을 보였고, 대조군과 G 군 사이에서는 통계적으로 유의한 차이를 보이지 않았다(P>.05). 대조군과W군에서는 전후방파절 양상을 주로 보였고, G군에서는 보강재를 따라 파절되는 양상을 주로 보였다. 결론: 본 연구의 한계 내에서, 상악 총의치의 수리 시 유리섬유 보강재를 이용하는 경우 파절 강도가 향상되지 않았으며(P>.05), 유리섬유 보강재를 따라 접착 실패를 보이는 파절 양상이 나타났다.

SSA-based stochastic subspace identification of structures from output-only vibration measurements

  • Loh, Chin-Hsiung;Liu, Yi-Cheng;Ni, Yi-Qing
    • Smart Structures and Systems
    • /
    • 제10권4_5호
    • /
    • pp.331-351
    • /
    • 2012
  • In this study an output-only system identification technique for civil structures under ambient vibrations is carried out, mainly focused on using the Stochastic Subspace Identification (SSI) based algorithms. A newly developed signal processing technique, called Singular Spectrum Analysis (SSA), capable to smooth a noisy signal, is adopted for preprocessing the measurement data. An SSA-based SSI algorithm with the aim of finding accurate and true modal parameters is developed through stabilization diagram which is constructed by plotting the identified system poles with increasing the size of data matrix. First, comparative study between different approaches, with and without using SSA to pre-process the data, on determining the model order and selecting the true system poles is examined in this study through numerical simulation. Finally, application of the proposed system identification task to the real large scale structure: Canton Tower, a benchmark problem for structural health monitoring of high-rise slender structures, using SSA-based SSI algorithm is carried out to extract the dynamic characteristics of the tower from output-only measurements.