• Title/Summary/Keyword: Cantilever fixed partial denture

Search Result 12, Processing Time 0.034 seconds

Influence of the amount of tooth surface preparation on the shear bond strength of zirconia cantilever single-retainer resin-bonded fixed partial denture

  • Sillam, Charles-Ellie;Cetik, Sibel;Ha, Thai Hoang;Atash, Ramin
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.286-290
    • /
    • 2018
  • PURPOSE. Conventional resin-bonded fixed partial dentures (RBFPDs) are usually made with a two-retainer design. Unlike conventional RBFPDs, cantilever resin-bonded fixed partial dentures (Cantilever RBFPDs) are, for their part, made with a single-retainer design. The aim of this study was to compare the effect of tooth surface preparation on the bond strength of zirconia cantilever single-retainer RBFPDs. The objective is to evaluate the shear bond strength of these single-retainer RBFPDs bonded on 3 different amount of tooth surface preparation. MATERIALS AND METHODS. Thirty extracted bovine incisors were categorized to 3 groups (n=10), with different amounts of tooth surface preparations. Teeth were restored with single-retainer RBFPDs with different retainer surfaces: large retainer of $32mm^2$; medium retainer of $22mm^2$; no retainer and only a proximal connecting box of $12mm^2$. All RBFPDs were made of zirconia and were bonded using an adhesive system without adhesive capacity. Shear forces were applied to these restorations until debonding. RESULTS. Mean shear bond strength values for the groups I, II, and II were $2.39{\pm}0.53MPa$, $3.13{\pm}0.69MPa$, and $5.40{\pm}0.96MPa$, respectively. Statistical analyses were performed using a one-way ANOVA test with Bonferroni post-hoc test, at a significance level of 0.001. Failure modes were observed and showed a 100% adhesive fracture. CONCLUSION. It can be concluded that the preparation of large tooth surface preparation might be irrelevant. For zirconia single-retainer RBFPD, only the preparation of a proximal connecting box seems to be a reliable and minimally invasive approach. The differences are statistically significant.

An implant-supported removable partial denture for a patient with post-inflammatory scar contracture caused by burn complications: a clinical report

  • Kim, Jee-Hwan;Lee, Jae-Hoon
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.1
    • /
    • pp.57-59
    • /
    • 2012
  • The scars and contracture around the oral-facial region may cause difficulty in prosthodontic treatment to restore esthetics and function for the patients, who suffered severe burns. This article presents a technique that uses a fixed partial denture prepared with a conventional milling technique and an attachment to support anterior cantilever removable partial denture, thereby providing a more esthetically acceptable and functional result.

CLINICAL PERSPECTIVES ON 2-UNIT CANTILEVERED RESIN-BONDED FIXED PARTIAL DENTURE (2-unit cantilever 레진접착성 가공의치 (resin-bonded fixed partial denture) 임상의 현재)

  • Yi Yang-Jin;Choi Lee-Ra;Parki Chan-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.1
    • /
    • pp.81-88
    • /
    • 2003
  • Resin-bonded bridge has been an alternative to conventional bridge, since resin-bonded bridge has many attractive advantages such as minimal tooth preparation, short chair time and low cost over conventional bridge. Unfortunately, however, it was reported that resin-bonded bridge showed high failure rate from debonding of retainer in spite of consecutive advances in preparation and materials. And it was shown that multiple abutments were more likely to fail. The majority of debonding failure was considered due to the mobility of the abutment during function. In this view, recently, modification in resin-bonded bridge design was tried. Single retainer, single pontic. 2-unit cantilevered resin-bonded bridge was applied to clinical performance and was shown as retentive or more retentive than fixed-fixed type resin-bonded bridge. This was consistent with the results of studies in 2-unit cantilevered resin-bonded bridges made with all ceramic, In-ceram. The purpose of this article was to overview principles of design and to analyze clinical results of 2-unit cantilevered resin-bonded bridge in comparison with the reports of fixed-fixed resin-bonded bridge.

Three Dimensional Finite Element Analysis on ITI Implant Supported Fixed Partial Dentures with Various Fitting Accuracy (적합도에 따른 ITI 임플란트 지지 고정성 국소의치의 삼차원 유한요소 분석)

  • Choi, Min-Ho;Lee, Il-Kwon;Kim, Yu-Ree;Cho, Hye-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.1
    • /
    • pp.75-87
    • /
    • 2006
  • The purpose of this study was to investigate the effects of prostheses misfit, cantilever on the stress distribution in the implant components and surrounding bone using three dimensional finite element analysis. Two standard 3-dimensional finite element models were constructed: (1) 3 ITI implant supported, 3-unit fixed partial denture and (2) 3 ITI implant supported, 3-unit fixed partial denture with a distal cantilever. variations of the standard finite element models were made by placing a $100{\mu}m$ or $200{\mu}m$ gap between the fixture, the abutment and the crown on the second premolar and first molar. Total 14 models were constructed. In each model, 244 N of vertical load and 244 N of $30^{\circ}$ oblique load were placed on the distal marginal ridge of the distal molar. von Mises stresses were recorded and compared in the crowns, abutments, crestal compact bones, and trabecular bones. The results were obtained as follows: 1. In the ITI implant system, cement-retained prostheses showed comparatively low stress distributions on all the implant components and fixtures regardless of the misfit sizes under vertical loading. The stresses were increased twice under oblique loading especially in the prostheses with cantilever, but neither showed the effects of misfit size. 2. Under the oblique loading and posterior cantilever, the stresses were highly increased in the crestal bones around ITI implants, but effects of misfit were not shown. Although higher stresses were shown on the apical portion of trabecular bones, the effects by misfit were little and the stresses were increased by the posterior cantilever. 3. When the cement loss happened in the ITI implant supported FPD with misfit, the stresses were increased in the implant componets and supporting structures.

Stress analysis of anterior cantilever bridge

  • Yang, Hong-So;Ku, Chul-Whoi
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.3
    • /
    • pp.283-290
    • /
    • 2000
  • State ment of Problems. Although some clinicians report long-term success with fixed partial denture (FPD) that contain cantilever pontic, the use of cantilever FPDs may be hazardous because of unfavorable leverages during mastication. Purpose of Study. This study aims to compare the stress induced in the periodontium with normal and reduced bone support, and to analyze the stress distribution patterns of anterior cantilevered FPDs using the finite element method. Results. Cantilever bridge with a reduced bone level generated the highest peak stresses in the periodontium. In the models of reduced bone support, a cantilever bridge exhibited the great-est mobility and a 3-unit fixed restorations induced the smallest mobility of canine. The highest peak stress level of a 3-unit bridge in the periodontium is similar to the unrestored situation. But stress distribution in the bone is modified. Conclusion. In reduced bone support, a cantilever bridge exhibited the greatest mobility and stress.

  • PDF

CLINICAL AND RADIOGRAPHICAL EVALUATION OF IMPLANT-SUPPORTED FIXED PARTIAL PROSTHESES (임플랜트 지지 고정성 국소의치의 임상적, 방사선학적 평가)

  • Seo Ji-Young;Shim June-Sung;Lee Jae-Hoon;Lee Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.4
    • /
    • pp.394-404
    • /
    • 2006
  • Statement of problem: A conventional 3-unit fixed partial denture design with a pontic between two retainers is the most commonly used. However in cases where the mental nerve is in close proximity to the second premolar, a cantilever design can be considered. As such, logical and scientific evidence is lacking for the number and position of implants to be placed for partially edentulous patients, and no clear-cut set of treatment principles currently exist. Purpose : The purpose of this study was to evaluate prognosis of implant-supported fixed partial dentures and to compare changes in bone level which may rise due to the different factors. Material and method : The present study examined radiographical marginal bone loss in patients treated with implant-supported fixed partial dentures (87 prostheses supported by 227 implants) and evaluated the influence of the span of the pontic, type of the opposing dentition. Clinical complications were studied using a retrospective method. Within the limitation of this study. the following result were drawn Result, 1. Seven of a total of 227 implants restored with fixed prostheses failed, resulting in a 96.9% success rate. 2. Complications encountered during recall appointments included dissolution of temporary luting agent (17 cases), porcelain fracture (8 cases), loosened screws (5 cases), gingival recession (4 cases), and gingival enlargement (1 case). 3. Marginal bone loss, 1 year after prosthesis placement, was significant(P<0.05) in the group that underwent bone grafting, however no difference in annual resorption rate was observed afterwards. 4. Marginal bono loss, 1 year post-placement, was greater in cantilever-type prostheses than in centric pontic protheses (P<0.05). 5. Marginal bone loss was more pronounced in posterior regions compared to anterior regions (P<0.05). 6. The degree of marginal bone loss was proportional to the length of the pontic (P<0.05). Conclusion: The success rate of implant-supported fixed partial dentures, including marginal bone loss, was satisfactory in the present study. Factors influencing marginal bone loss included whether bone graft was performed, location of the pontic (s), location of the surgical area in the arch pontic span. Long-term evaluation is necessary for implant-supported fixed partial dentures, as are further studies on the relationship between functional load and the number of implants to be placed.

Photoelastic Stress Analysis of Fixed Partial Dentures (가공의치(架工義齒)에 작용(作用)하는 Stress에 관(關)한 광탄성학적(光彈性學的) 분석(分析))

  • Cho, Won-Haeng
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.18 no.1
    • /
    • pp.15-35
    • /
    • 1980
  • The purpose of this study was to investigate stresses in the various components of fixed partial dentures restoring the posterior teeth of the lower jaw, and to measure quantitatively the effects of certain modifications in structural design on the stresses in the restorations using two-dimensional photoelasticity. Two-dimensional photoelastic methods were used in this study. Several models of fixed partial dentures were constructed. Shoulder less margins and anatomic occlusal reduction were incorporated in Model 1. Rounded shoulders and flat occlusal reduction were incorporated in Model 2, while Model 3 was a cantilever fixed partial denture. Other similar fixed partial dentures were constructed with V and U notches deliverately included in the region of the fixed joints for comparative reasons. The birefringent materials used in this study were PSM-1 and PSM-5 in standard sheets. PSM-1 was used for constructing the substructure, and PSM-5 was used in making the components of the fixed partial dentures. The two materials were used in the construction of composite photoelastic models. Improved artificial stone was used to represent dental cement in luting the composite photoelastic models. Static loading procedures were used at preplanned sites to represent occlusal loads in the mouth. 35 mm color and B/W film were used to record isochromatics in accordance with photoelastic procedures. Data reduction was performed using the grid method, which helped in, the mathematical integration procedure (Shear difference method) to separate the principal stresses. The results were as follows. 1. Fixed partial dentures do not function in bending as a symmetrical beam. Alternate areas of tension and compression were demonstrated when multiple contact loading was used. 2. The weakest part in posterior fixed partial dentures is the fixed joint. 3. (1) Models I and modified Model I were loaded on the pontic using a 50 pound vertical static load. The shear stress near the posterior fixed joint in Model 1 (U notches) was+129.4 p.s.i., and at the same fixed joint in modified Model 1 (V notches) was+239.4 p.s.i. The concentration of stress in fixed joint was reduced by 50% when U notches replaced the V notches. (2) Modified Model 2 was loaded using a multiple contact loader at a total load of 125 pounds. The difference between the principal stresses (${\sigma}_1-{\sigma}_2$), shear stress, at the V notches was+600 p.s.i., and at the U notches was+3l7 p.s.i. The shear stress was reduced by 50% when U notches replaced the V notches. V-grooves at the fixed joints should be avoided, and should be replaced by regular shaped U-grooves. 4. Cantilever fixed partial dentures had much higher stresses at the fixed joint than fixed partial dentures that were attached at both ends.

  • PDF

Reinforcing the retention of provisional restoration using provisional implant on maxillary anterior region: clinical case report (상악 전치부 고정성 보철물 수복 시 임시 임플란트를 이용한 임시보철물의 유지력 증가 증례보고)

  • Kim, Chang-Dae;Moon, Hong-Seok;Chung, Moon-Kyu;Lee, Jae-Hoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.3
    • /
    • pp.221-225
    • /
    • 2013
  • Proper management of provisional prosthesis is key to success in prosthodontics. Provisional restoration on maxillary anterior missing area frequently come across a incident of falling off especially in patients with long span pontics and oval arch shape. This is because maxillary anterior teeth are more exposed to horizontal force than the posterior teeth and additional anterior cantilever effect will negatively affect to the retention of provisional prosthesis. Beside that maxillary anterior provisional prosthesis should provide proper incisal guidance during the mandibular functional movements. However occlusal contacts on the prosthesis in maximum intercuspal position are located on opposite side of fulcrum line of prosthesis which will cause removing force against the provisional prosthesis. This case report present that provisional implant prevent pre-described harmful effect on maxillary anterior fixed provisional prosthesis and provide comfort and satisfactory result during post-extraction healing period.

A 10-year retrospective study on the risk factors affecting the success rate of internal connection implants after prosthetic restoration (내부연결 임플란트의 보철 수복 후 성공률에 미치는 위험요소에 관한 10년간의 후향적 연구)

  • Seoin Lee;Min-Jeong Kim
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.2
    • /
    • pp.113-124
    • /
    • 2023
  • Purpose. The purpose of this study is to help increase the success rate by analyzing the types and characteristics of implant prosthesis and the survival rate. Materials and methods. Among implants placed between 2011 and 2020 at Sanbon Dental Hospital, College of Dentistry, Wonkwang University, a case restored by a prosthetic surgeon was investigated for the characteristics and correlation of failure. The causes of failure were classified as failure of osseointegration, peri-implantitis, fixture fracture, abutment fracture, screw fracture, screw loosening, prosthesis fracture, and loss of prosthesis retention. Prosthetic method, cantilever presence, placement location, etc. were analyzed for their correlation with implant failure. Results analysis was derived through Chi-square test and Kaplan-Meier survival analysis using SPSS ver 25.0 (IBM, Chicago, IL, USA). Results. A total of 2587 implants were placed, of which 1141 implants were restored with Single Crown and 1446 implants with Fixed Partial Denture, and the cumulative survival rate was 88.1%. The success rate of SC was 86.2% (984) and the success rate of FPD was 89.6% (1295), showing statistically significant differences, among which factors that had significant differences were abutment fracture, screw fracture, and screw loosening (P < .05). Conclusion. As a result of the 10-year follow-up, more failures occurred due to biomechanical factors than biological factors. Further studies on the success of implants will be needed in the future.