• Title/Summary/Keyword: Canopy9

Search Result 195, Processing Time 0.024 seconds

Sequential Sampling Plan for Aphis gossypii (Hemiptera: Aphididae) based on Its Intra-plant Distribution Patterns in Greenhouse Cucumber at Different Growth Stages (온실재배 오이의 생육단계별 목화진딧물의 주내 분포 특성에 기초한 축차표본조사법)

  • Chung, Bu-Keun;Song, Jeong-Heub;Lee, Heung-Su;Choi, Byeong-Ryul
    • Korean journal of applied entomology
    • /
    • v.54 no.4
    • /
    • pp.401-407
    • /
    • 2015
  • This study describes the development of a method for monitoring Aphis gossypii in greenhouse cucumber fields that was used during 2013 and 2014. The dispersion pattern of A. gossypii was determined by commonly used methods: Taylor's power law (TPL) and Iwao's patchiness regression (IPR). The sample unit was determined by linear regression analysis between mean density of sample unit versus whole plant. The optimum sample unit for different plant growth stages was two leaves (median and the lowest + 1 leaf) when the total number of leaves was less than nine, and three leaves (4th, 7th from canopy, and the lowest +1 leaf) when the total number of leaves was greater than nine. A. gossypii showed an aggregated distribution pattern, as the slopes of both TPL and IPR lines were greater than 1. TPL provided a better description of the mean-variance relationship than did IPR. The slopes and intercepts of TPL and IPR from leaf samples did not differ between the surveyed years. Fixed precision levels (D) for a sequential sampling plan were developed using Green's and Kuno's equations based on the number of aphid in a leaf sample. Green's method was more efficient than Kuno's to stop sampling. The number of samples needed to estimate the density of A. gossypii increased at higher D levels and lower mean densities. The cumulative number of aphids needed to stop sampling increased at higher D levels and with fewer plants sampled. Thus to estimate 10 aphids per leaf, 13 plants needed to be sampled, and the cumulative number of aphids to stop sampling was 131.

Effect of Supplementary Radiation on Growth of Greenhouse-Grown Kales (온실재배 케일의 생장에 미치는 보광효과)

  • Heo, Jeong-Wook;Kim, Hyeon-Hwan;Lee, Kwang-Jae;Yoon, Jung-Boem;Lee, Joung-Kwan;Huh, Yoon-Sun;Lee, Ki-Yeol
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.1
    • /
    • pp.38-45
    • /
    • 2015
  • BACKGROUND: For commercial production of greenhouse crops under shorter day length condition, supplementary radiation has been usually achieved by the artificial light source with higher electric consumption such as high-pressure sodium, metal halide, or incandescent lamps. Light-Emitting Diodes (LEDs) with several characteristics, however, have been considered as a novel light source for plant production. Effects of supplementary lighting provided by the artificial light sources on growth of Kale seedlings during shorter day length were discussed in this experiment. METHODS AND RESULTS: Kale seedlings were grown under greenhouse under the three wave lamps (3 W), sodium lamps (Na), and red LEDs (peak at 630 nm) during six months, and leaf growth was observed at intervals of about 30 days after light exposure for 6 hours per day at sunrise and sunset. Photosynthetic photon flux (PPF) of supplementary red LEDs on the plant canopy was maintained at 0.1 (RL), 0.6 (RM), and $1.2(RH){\mu}mol/m^2/s$ PPF. PPF in 3 W and Na treatments was measured at $12{\mu}mol/m^2/s$. Natural light (NL) was considered as a control. Leaf fresh weight of the seedlings was more than 100% increased under the 3 W, Na and RH treatment compared to natural light considering as a conventional condition. Sugar synthesis in Kale leaves was significantly promoted by the RM or RH treatment. Leaf yield per $3.3m^2$ exposed by red LEDs of $1.2{\mu}mol/m^2/s$ PPF was 9% and 16% greater than in 3W or Na with a higher PPF, respectively. CONCLUSION: Growth of the leafy Kale seedlings were significantly affected by the supplementary radiation provided by three wave lamp, sodium lamp, and red LEDs with different light intensities during the shorter day length under greenhouse conditions. From this study, it was suggested that the leaf growth and secondary metabolism of Kale seedlings can be controlled by supplementary radiation using red LEDs of $1.2{\mu}mol/m^2/s$ PPF as well as three wave or sodium lamps in the experiment.

A New Tongil-type Glutinous Rice Variety 'Hangangchal 1' of Multi-Diseases and Insect Resistance (중생 복합내병성 통일형 찰벼 품종 '한강찰 1호')

  • Song, You-Chun;Cho, Jun-Hyeon;Jung, Kuk-Hyun;Ha, Woon-Goo;Kim, Se-Ri;Kwak, Do-Yeon;Park, No-Bong;Kim, Young-Doo;Kim, Sang-Yeol;Oh, Seong-Hwan;Lim, Sang-Jong;Shin, Mun-Sik
    • Korean Journal of Breeding Science
    • /
    • v.43 no.3
    • /
    • pp.201-205
    • /
    • 2011
  • 'Hangangchal 1' is a new glutinous rice cultivar of second generation Tongil-type with a mid-maturing ecotype that developed by the rice breeding team of Yeongnam Agricultural Research Institute (YARI), RDA. in 2006. This cultivar was derived from a cross between 'Hangangchal', a Tongil-type glutinous cultivar and 'YR8208-20', a high yield potential in 1986/1987 winter season. 'Hangangchal 1' was selected by pedigree and bulk breeding methods from $F_3$ to $F_6$ populations. A promising line, YR10498-8-1-3, was selected and designated as 'Milyang 167' in 1997. The local adaptability test of 'Milyang 167' was carried out at seven locations during 3 years in 1998, 2005, and 2006. It has tolerance to lodging with good canopy architecture as 87cm of culm length. This cultivar is resistant to bacterial blight $K_1$, $K_2$, and $K_3$ race, rice stripe virus, rice dwarf virus, and leaf blast disease. The milled rice endosperm of 'Hangangchal 1' is glutinous and its whiteness was almost similar compared to 'Shinseonchalbyeo'. The yield of milled rice of 'Hangangchal 1' was average 5.97 MT/ha at ordinary cultivation of 9 kg/10a N fertilizer level in local adaptability test. This cultivar would be adaptable to the mid and southern plain of Korea.

A Medium-Maturing, Good Quality and Multiple Disease Resistance Japonica Rice Variety 'Migwang' (중부지방 적응 고품질 중생 복합내병성 벼 신품종 '미광')

  • Kim, Myeong-Ki;Cho, Young-Chan;Kim, Yeon-Gyu;Hong, Ha-Cheol;Choi, Im-Soo;Hwang, Hung-Goo;Oh, Myung-Kyu;Kim, Jeong-Ju;Choi, Yong-Hwan;Baek, Man-Kee;Lee, Jeom-Ho;Jeong, Jong-Min;Choi, In-Bea;Yoon, Mi-Ra;Roh, Jae-Hwan;Ahn, Eok-Keun
    • Korean Journal of Breeding Science
    • /
    • v.42 no.3
    • /
    • pp.302-306
    • /
    • 2010
  • 'Migwang' is a new japonica rice variety developed from a cross between SR15926-10-2-3-3-3 having a good canopy architecture and multiple disease resistance, and Iksan431 having a translucent milled rice and good eating-quality with a view of developing a new variety having multiple disease resistance by the rice breeding team at NICS, RDA in 2009. The heading date of this variety is August 15 and later than check variety, Hwaseongbyeo, by four days. 'Migwang' has 75 cm of culm length and 98 spikelets per panicle. This variety showed longer heading delay and higher spikelet sterility than those of Hwaseongbyeo while exposed to cold stress. This variety showed resistance to blast disease and bacterial leaf blight, but susceptible to rice stripe virus and planthoppers. The milled rice of this variety exhibits translucent, clear non-glutinous endosperm and short grain shape. 'Migwang' has better palatability index of cooked rice than that of Hwaseongbyeo. The whole grain rate of milled rice and milled rice recovery of 'Migwang' are higher than those of Hwaseongbyeo as 96.8% and 73.1%, respectively. 'Migwang' has 5.5 MT/ha in milled rice. 'Migwang' could be adaptable to the middle plain area, mid-western and southeastern costal areas and mid-mountainous areas in Korea.

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperate Forest Zone of Korea (I) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態学的) 연구(研究) (I))

  • Yim, Kyong Bin;Lee, Kyong Jae;Kim, Yong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.58-71
    • /
    • 1981
  • Thecodiplosis japonesis is sweeping the Pinus densiflora forests from south-west to north-east direction, destroying almost all the aged large trees as well as even the young ones. The front line of infestation is moving slowly but ceaselessly norhwards as a long bottle front. Estimation is that more than 40 percent of the area of P. densiflora forest has been damaged already, however some individuals could escapes from the damage and contribute to restore the site to the previous vegetation composition. When the stands were attacked by this insect, the drastic openings of the upper story of tree canopy formed by exclusively P. densiflora are usually resulted and some environmental factors such as light, temperature, litter accumulation, soil moisture and offers were naturally modified. With these changes after insect invasion, as the time passes, phytosociologic changes of the vegetation are gradually proceeding. If we select the forest according to four categories concerning the history of the insect outbreak, namely, non-attacked (healthy forest), recently damaged (the outbreak occured about 1-2 years ago), severely damaged (occured 5-6 years ago), damage prolonged (occured 10 years ago) and restored (occured about 20 years ago), any directional changes of vegetation composition could be traced these in line with four progressive stages. To elucidate these changes, three survey districts; (1) "Gongju" where the damage was severe and it was outbroken in 1977, (2) "Buyeo" where damage prolonged and (3) "Gochang" as restored, were set, (See Tab. 1). All these were located in the south temperate forest zone which was delimited mainly due to the temporature factor and generally accepted without any opposition at present. In view of temperature, the amount and distribution of precipitation and various soil factor, the overall homogeneity of environmental conditions between survey districts might be accepted. However this did not mean that small changes of edaphic and topographic conditions and microclimates can induce any alteration of vegetation patterns. Again four survey plots were set in each district and inter plot distance was 3 to 4 km. And again four subplots were set within a survey plot. The size of a subplot was $10m{\times}10m$ for woody vegetation and $5m{\times}5m$ for ground cover vegetation which was less than 2 m high. The nested quadrat method was adopted. In sampling survey plots, the followings were taken into account: (1) Natural growth having more than 80 percent of crown density of upper canopy and more than 5 hectares of area. (2) Was not affected by both natural and artificial disturbances such as fire and thinning operation for the past three decades. (3) Lower than 500 m of altitude (4) Less than 20 degrees of slope, and (5) Northerly sited aspect. An intensive vegetation survey was undertaken during the summer of 1980. The vegetation was devided into 3 categories for sampling; the upper layer (dominated mainly by the pine trees), the middle layer composed by oak species and other broad-leaved trees as well as the pine, and the ground layer or the lower layer (shrubby form of woody plants). In this study our survey was concentrated on woody species only. For the vegetation analysis, calculated were values of intensity, frequency, covers, relative importance, species diversity, dominance and similarity and dissimilasity index when importance values were calculated, different relative weights as score were arbitrarily given to each layer, i.e., 3 points for the upper layer, 2 for the middle layer and 1 for the ground layer. Then the formula becomes as follows; $$R.I.V.=\frac{3(IV\;upper\;L.)+2(IV.\;middle\;L.)+1(IV.\;ground\;L.)}{6}$$ The values of Similarity Index were calculated on the basis of the Relative Importance Value of trees (sum of relative density, frequency and cover). The formula used is; $$S.I.=\frac{2C}{S_1+S_2}{\times}100=\frac{2C}{100+100}{\times}100=C(%)$$ Where: C = The sum of the lower of the two quantitative values for species shared by the two communities. $S_1$ = The sum of all values for the first community. $S_2$ = The sum of all values for the second community. In Tab. 3, the species composition of each plot by layer and by district is presented. Without exception, the species formed the upper layer of stands was Pinus densiflora. As seen from the table, the relative cover (%), density (number of tree per $500m^2$), the range of height and diameter at brest height and cone bearing tendency were given. For the middle layer, Quercus spp. (Q. aliena, serrata, mongolica, accutissina and variabilis) and Pinus densiflora were dominating ones. Genus Rhodedendron and Lespedeza were abundant in ground vegetation, but some oaks were involved also. (1) Gongju district The total of woody species appeared in this district was 26 and relative importance value of Pinus densiflora for the upper layer was 79.1%, but in the middle layer, the R.I.V. for Quercus acctissima, Pinus densiflora, and Quercus aliena, were 22.8%, 18.7% and 10.0%, respectively, and in ground vegetation Q. mongolica 17.0%, Q. serrata 16.8% Corylus heterophylla 11.8%, and Q. dentata 11.3% in order. (2) Buyeo district. The number of species enumerated in this district was 36 and the R.I.V. of Pinus densiflora for the uppper layer was 100%. In the middle layer, the R.I.V. of Q. variabilis and Q. serrata were 8.6% and 8.5% respectively. In the ground vegetative 24 species were counted which had no more than 5% of R.I.V. The mean R.I.V. of P.densiflora ( totaling three layers ) and averaging four plots was 57.7% in contrast to 46.9% for Gongju district. (3) Gochang-district The total number of woody species was 23 and the mean R.I.V. of Pinus densiflora was 66.0% showing greater value than those for two former districts. The next high value was 6.5% for Q. serrata. As the time passes since insect outbreak, the mean R.I.V. of P. densiflora increased as the following order, 46.9%, 57.7% and 66%. This implies that P. densiflora was getting back to its original dominat state again. The pooled importance of Genus Quercus was decreasing with the increase of that for Pinus densiflora. This trend was contradict to the facts which were surveyed at Kyonggi-do area (the central temperate forest zone) reported previously (Yim et al, 1980). Among Genus Quercus, Quercus acutissina, warm-loving species, was more abundant in the southern temperature zone to which the present research is concerned than the central temperate zone. But vice-versa was true with Q. mongolica, a cold-loving one. The species which are not common between the present survey and the previous report are Corpinus cordata, Beltala davurica, Wisturia floribunda, Weigela subsessilis, Gleditsia japonica var. koraiensis, Acer pseudosieboldianum, Euonymus japonica var. macrophylla, Ribes mandshuricum, Pyrus calleryana var. faruiei, Tilia amurensis and Pyrus pyrifolia. In Figure 4 and Table 5, Maximum species diversity (maximum H'), Species diversity (H') and Eveness (J') were presented. The Similarity indices between districts were shown in Tab. 5. Seeing Fig. 6, showing two-dimensional ordination of polts on the basis of X and Y coordinates, Ai plots aggregate at the left site, Bi plots at lower site, and Ci plots at upper-right site. The increasing and decreasing patterns as to Relative Density and Relative Importance Value by genus or species were given in Fig. 7. Some of the patterns presented here are not consistent with the previously reported ones (Yim, et al, 1980). The present authors would like to attribute this fact that two distinct types of the insect attack, one is the short war type occuring in the south temperate forest zone, which means that insect attack went for a few years only, the other one is a long-drawn was type observed at the temperate forest zone in which the insect damage went on continuously for several years. These different behaviours of infestation might have resulted the different ways of vegetational change. Analysing the similarity indices between districts, the very convincing results come out that the value of dissimilarity index between A and B was 30%, 27% between B and C and 35% between A and C (Table 6). The range of similarity index was obtained from the calculation of every possible combinations of plots between two districts. Longer time isolation between communities has brought the higher value of dissimilarity index. The main components of ground vegetation, 10 to 20 years after insect outbreak, become to be consisted of mainly Genus Lespedeza and Rhododendron. Genus Quercus which relate to the top dorminant state for a while after insect attack was giving its place to Pinus densiflora. It was implied that, provided that the soil fertility, soil moisture and soil depth were good enough, Genus Quercuss had never been so easily taken ever by the resistant speeies like Pinus densiflora which forms the edaphic climax at vast areas of forest land. Usually they refer Quercus to the representative component of the undisturbed natural forest in the central part of this country.

  • PDF