• Title/Summary/Keyword: Canopy tree

Search Result 226, Processing Time 0.032 seconds

Calculation of Tree Height and Canopy Crown from Drone Images Using Segmentation

  • Lim, Ye Seul;La, Phu Hien;Park, Jong Soo;Lee, Mi Hee;Pyeon, Mu Wook;Kim, Jee-In
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.6
    • /
    • pp.605-614
    • /
    • 2015
  • Drone imaging, which is more cost-effective and controllable compared to airborne LiDAR, requires a low-cost camera and is used for capturing color images. From the overlapped color images, we produced two high-resolution digital surface models over different test areas. After segmentation, we performed tree identification according to the method proposed by , and computed the tree height and the canopy crown size. Compared with the field measurements, the computed results for the tree height in test area 1 (coniferous trees) were found to be accurate, while the results in test area 2 (deciduous coniferous trees) were found to be underestimated. The RMSE of the tree height was 0.84 m, and the width of the canopy crown was 1.51 m in test area 1. Further, the RMSE of the tree height was 2.45 m, and the width of the canopy crown was 1.53 m in test area 2. The experiment results validated the use of drone images for the extraction of a tree structure.

Growth Control of Upper Part in 'Fuji'/M.9 Apple Tree Canopy by Cutting Time of Trunk and Plant Growth Regulators (주간 절단시기 및 생장조절제를 이용한 '후지'/M9 사과나무 수관 상단부 생장조절)

  • Sagong, Dong-Hoon;Lee, Jae-Wang;Yoon, Tae-Myung
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.2
    • /
    • pp.87-96
    • /
    • 2018
  • BACKGROUND: The vigorous shoot growth in upper part of apple tree canopy leads to poor fruit quality and flower bud formation in lower part of canopy. So, this study was conducted to develop the proper control method about the shoot growth in upper part of apple tree canopy. METHODS AND RESULTS: Trunks of 'Fuji'/M9 apple trees were cut (back pruned) to 2.5 m in tree height on 11 February (dormant) or 12 April (full bloom). Naphthalene acetic acid (NAA) was applied at 2.0% to cut surface when trunk was pruned. Prohexadione-calcium (Pro-Ca) was sprayed at 250 mg/L above 2.0 m in tree height at 23 April (petal fall). The NAA or Pro-Ca application after trunk was pruned at dormant (TR-2 and TR-3) significantly reduced shoot growth in upper part of canopy compared with the control (tree was only pruned at dormant, TR-1), but the percent of shoots showing the secondary growth of TR-3 was higher over 2 times than that of TR-2. The reduction of shoot growth in upper part of canopy by TR-2 and TR-3 increased the fruit red color from the lower part in the treating year and blooming of the lower part in the following year. CONCLUSION: Applying 2.0% NAA to cut surface of pruned apple trunk at dormant was the most effective way for stabilization of the tree vigor in upper part of the canopy in a high density apple orchard.

Effect of Tree Height on Light Transmission, Spray Penetration, Tree Growth, and Fruit Quality in the Slender-spindle System of 'Hongro'/M9 Apple Trees ('홍로'/M.9 사과나무의 세장방추형에서 수고가 투광율, 투약율, 수체 생육 및 과실 품질에 미치는 영향)

  • Choi, Dong Geun;Song, Ju-Hee;Kang, In-Kyu
    • Horticultural Science & Technology
    • /
    • v.32 no.4
    • /
    • pp.454-462
    • /
    • 2014
  • This study was carried out to determine the effect of tree height on light transmission, spray penetration, tree growth performance, fruit quality attributes, and labor productivity in the slender-spindle system of 'Hongro'/M.9 apple trees. With increasing tree height, the light penetration into the internal parts of the canopy decreased, especially in the lower canopy. Leaf area index (LAI) increased with increasing tree height, thereby leading to a reduction in the extent of spray penetration into the interior of the canopy. With increasing tree height, shoot growth was more vigorous but produced slender shoots in the upper canopy compared to the lower canopy. Although the soluble solid content and coloration of fruit decreased, there was no difference in fruit firmness and acidity. In addition, the number of final fruit set increased, although the production of large fruit (> 305 g) decreased. The increase in tree height also significantly increased the labor required for practices such as thinning of flowers and fruits, pruning, and harvesting. Nevertheless, this problem of increased in labor input in taller trees would was eased by use of a mechanical lift. Utilizing a lift for thinning the flowers of trees 4.5 m in height saved 14.6 min per tree, compared to the use of ladder. Therefore, it is highly considerable that in order to enhance light transmission and fruit coloration, light conditions should be improved in the internal tree canopy of slender-spindle systems.

Disturbance regime and tree regeneration in kwangnung natural forest (광릉 자연림에서의 교란체제와 수목의 재생)

  • Cho, Do-Soon
    • The Korean Journal of Ecology
    • /
    • v.15 no.4
    • /
    • pp.395-410
    • /
    • 1992
  • Disturbance regime and tree regeneration were studied in kwangnung natural forest, an old-growth deciduous hardwood forest located in central korea. This forest is dominated by carpinus laxiflora, c.erosa, and quercus species. The area occupied by canopy gaps was 4.6% of the total forested area, and the mean size of canopy gaps was 92 $m^2$ with the maximum being 524 $m^2$. More than half of the gaps were less than four years old, and 3/4 of the gaps were created by death of only or two canopy trees, indicating the dominance of small-sized gaps in kwangnung forest. about half of the gap-makers were c. laxiflora, and another one third were quercus species. In contrast, the most frequent relacers were c. laxiflora while quercus species filled only 5% of the gaps, suggesting a future shift in tree species composition under the current disturbance regime. tree regeration was more conspicuous even in small gaps than non-gaps regardless of shade-tolerance of tree species, indicating the importance of gaps in tree regeneration.

  • PDF

Estimating Dense Forest Canopy Structure Using Airborne Laser Scanner Data

  • Park J. H.;Jang K. C.;Ma J. L.;Lee K. S.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.638-641
    • /
    • 2004
  • Returned laser pulse has certain relationship with vegetation canopy structure (canopy closure, height, LAI, biomass). This study attempts to analyze the characteristics of airborne laser scanner data over very dense forest canopy. Discrete pulse laser scanner data were obtained on April 25, 2004 along with digital aerial color imagery. Using forest stand maps, 14 sample stands of 7 species groups were selected and the elevations from the first and last laser return were compared. From the preliminary analysis, we found that the difference between the first and last return was higher with deciduous forest stand than in coniferous stand. Although difference between the first and the last laser returns often corresponds to tree height, it would not be the case for the forest site having very dense canopy structure.

  • PDF

Analysis of Forest Structure Using LiDAR Data - A Case Study of Forest in Namchon-Dong, Osan - (LiDAR 데이터를 이용한 산림구조 분석 - 오산시 남촌동의 산림을 대상으로 -)

  • Lee, Dong-Kun;Ryu, Ji-Eun;Kim, Eun-Young;Jeon, Seong-Woo
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.5
    • /
    • pp.279-288
    • /
    • 2008
  • Vertical forest distribution is one of the important factors to understand various ecological mechanism such as succession, disturbance and environmental effects. LiDAR data provide information, both the horizontal and vertical distribution of forest structure. The laser scanner survey provided a point cloud, in which the x, y, and z coordinates of the points are known. The objectives of this study were 1) to analyze factors of forest structure such as individual tree isolation, tree height, canopy closure and tree density using LiDAR data and 2) to compare the forest structure between outer and interior forest. The paper conducted to extract the individual tree using watershed algorithm and to interpolate using the first return of LiDAR data for yielding digital surface model (DSM). The results of the study show characters of edge such as more isolated individual trees, higher density, lower canopy closure, and lower tree height than those of interior forest. LiDAR data is to be useful for analyzing of forest structure. Further study should be undertaken with species for more accurate results.

LOS Analysis Simulation considering Canopy Cover (수목차폐율을 고려한 가시선 분석 시뮬레이션)

  • Kong, Seong-Pil;Song, Hyun-Seung;Eo, Yang-Dam;Kim, Yong-Min;Kim, Chang-Jae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.55-61
    • /
    • 2012
  • The primary factors of the LOS(Line-of-Sight) analysis process are terrain height, camera capacity, and canopy cover. The canopy cover rate differs depending on the changing season, and its value is influenced by the tree density, tree height, and etc. This study generated the canopy cover value based on relationship between NDVI(Normalized Difference Vegetation Index) and DMT(Density Measure % of Tree/Canopy Cover), which is a digital map attribute, and then performed the LOS analysis on six station of test sites. As results, It was found that NDVI and DMT are correlated with each other through the experiments. Based on this finding, new DMT map can be generated using NDVI. Also, There is a difference between the result of visibility analysis using the present DMT and one using a new DMT. Especially, the spatial distributions of the detected visible areas are significantly different between the two visibility analysis results.

A Study on the Economic Benefit of Urban Parking Lot Tree Shading -In the Case of University of California Davis Parking Lot- (도시 주차장내 수목그늘의 경제적 이익 연구 -미국 캘리포니아 데이비스 대학 주차장을 사례로-)

  • Jang Dong-Su;McPherson E. G.
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.6 s.113
    • /
    • pp.98-108
    • /
    • 2006
  • The climate of urban area is an unstable type with considerable seasonal variation in precipitation wind speed, and temperature and it grows worse. Besides, ozone is a serious air pollutant in most of large cities. So worldwide, some of large cities are investing in forestry options to offset their climate problems, but lack of information has hindered comparisons of urban un cost effectiveness to other options. This research intends to study the economic benefits of tree shading of 19 parking lots in UCD campus. The economic benefits of tree shading are air conditioning savings, air quality, stormwater run-off, and other benefits. Especially, this study focuses how much the economic benefit of parking lot shading has been increased from 1995 to 2003 year by aerophoto. Some data on dimensions of parking lots and the number, size, tree species, and location of trees around each parking lot was inventoried. Two aerophotos(1995,2003) were used in order to analyze the increasement of tree canopy in 19 parking lots for 8 years. However, increasing coverage of trees and managing them for healthy growth would not be sufficient for avoiding adverse impacts by future climate change. Additional measures should be followed such as an increase of energy use efficiency and development of substitute energy. For example, coverage of trees help to save cooling energy by blocking solar radiation reaching parking cars and building structures through shading, and creating cool micro-climates through evapotranspiration. They also reduce heating demand by decreasing air infiltration and heat conduction out of the interior of buildings. Proper arrangement of vegetation over the parking lots can reduce cooling and heating costs. So proper planting design around hard space paving including species selection and location can significantly save cooling and heating energy. And a reduction in car and building's heating and cooling costs results in the reduction in energy demand which causes to emissions of air pollutants. Total increased tree canopy from 1995 to 2003 is $8,470.45m^2$ and the economic benefits is US$ 5,282.10. The economic benefit of one tree has been US$ 7.21 for 8 years. And an annually increased benefit is US$ 0.9 per a tree. If this kind of study is applied to studying the economic benefits of tree canopy in parking lots of Korea, it could result in guidelines of tree planting of parking lots. Because the trees selected for planting in parking lots were not suitable for an environment, the guidelines should contain a recommended list of trees. The guidelines should propose the shading percentage of parking lot when we plan a parking lot and contain the maintenance of trees in order to maximize the economic benefits of tree canopy.

A Study of the Urban Tree Canopy Mean Radiant Temperature Mitigation Estimation (도시림의 여름철 평균복사온도 저감 추정 연구)

  • An, Seung Man;Son, Hak-gi;Lee, Kyoo-Seock;Yi, Chaeyeon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.1
    • /
    • pp.93-106
    • /
    • 2016
  • This study aimed to estimate and evaluate the thermal mitigation of the urban tree canopy on the summer outdoor environment by quantitative use of mean radiant temperature. This study applied the SOLWEIG model based $T_{mrt}$ comparison method by using both (1) urban tree canopy presence examples and (2) urban tree canopy absence examples as constructed from airborne LiDAR system based three-dimensional point cloud data. As a result, it was found that an urban tree canopy can provide a decrease in the entire domain averaged daily mean $T_{mrt}$ about $5^{\circ}C$ and that the difference can increase up to $33^{\circ}C$ depending both on sun position and site conditions. These results will enhance urban microclimate studies such as indices (e.g., wind speed, humidity, air temperature) and biometeorology (e.g., perceived temperature) and will be used to support forest based public green policy development.

Modification of CFD results for Wind Environment in Urban area with Tree Canopy Model (Canopy Model 적용을 통한 도심지 풍환경 예측 CFD 시뮬레이션 결과의 보정)

  • Jung, Su-Hyeon;Hong, In-Pyo;Choi, Jong-Kyu;Song, Doo-Sam
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.185-193
    • /
    • 2012
  • Recently rapid urbanization facilitates development of high-rise building complex including apartment and office building in urban area. Many problems related with high -rise building are reported. Especially, unpleasant strong winds in pedestrian area are frequently encountered around the high-rise building. CFD simulation methods are used to analyze the wind environment of pedestrian level in high-rise building block. However, the results show differences between CFD and measurement. This difference is attributed to improper use of CFD. Conventional CFD simulation for wind environment around high-rise building does not describe the effect of trees, shrubs and plants near ground which affect the wind environment of pedestrian level. Canopy model can be used to reproduce the aerodynamic effects of trees, shrubs and plants near ground. In this paper, CFD simulation methods coupled with the tree canopy model to predict wind environment of pedestrian level in high-rise residential building block were suggested and the validity was analyzed by comparison between measurement and CFD results.