• Title/Summary/Keyword: Canny edge detection

Search Result 145, Processing Time 0.026 seconds

Automated Analyses of Ground-Penetrating Radar Images to Determine Spatial Distribution of Buried Cultural Heritage (매장 문화재 공간 분포 결정을 위한 지하투과레이더 영상 분석 자동화 기법 탐색)

  • Kwon, Moonhee;Kim, Seung-Sep
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.551-561
    • /
    • 2022
  • Geophysical exploration methods are very useful for generating high-resolution images of underground structures, and such methods can be applied to investigation of buried cultural properties and for determining their exact locations. In this study, image feature extraction and image segmentation methods were applied to automatically distinguish the structures of buried relics from the high-resolution ground-penetrating radar (GPR) images obtained at the center of Silla Kingdom, Gyeongju, South Korea. The major purpose for image feature extraction analyses is identifying the circular features from building remains and the linear features from ancient roads and fences. Feature extraction is implemented by applying the Canny edge detection and Hough transform algorithms. We applied the Hough transforms to the edge image resulted from the Canny algorithm in order to determine the locations the target features. However, the Hough transform requires different parameter settings for each survey sector. As for image segmentation, we applied the connected element labeling algorithm and object-based image analysis using Orfeo Toolbox (OTB) in QGIS. The connected components labeled image shows the signals associated with the target buried relics are effectively connected and labeled. However, we often find multiple labels are assigned to a single structure on the given GPR data. Object-based image analysis was conducted by using a Large-Scale Mean-Shift (LSMS) image segmentation. In this analysis, a vector layer containing pixel values for each segmented polygon was estimated first and then used to build a train-validation dataset by assigning the polygons to one class associated with the buried relics and another class for the background field. With the Random Forest Classifier, we find that the polygons on the LSMS image segmentation layer can be successfully classified into the polygons of the buried relics and those of the background. Thus, we propose that these automatic classification methods applied to the GPR images of buried cultural heritage in this study can be useful to obtain consistent analyses results for planning excavation processes.

A Morphology Technique-Based Boundary Detection in a Two-Dimensional QR Code (2차원 QR코드에서 모폴로지 기반의 경계선 검출 방법)

  • Park, Kwang Wook;Lee, Jong Yun
    • Journal of Digital Convergence
    • /
    • v.13 no.2
    • /
    • pp.159-175
    • /
    • 2015
  • The two-dimensional QR code has advantages such as directional nature, enough data storage capacity, ability of error correction, and ability of data restoration. There are two major issues like speed and correctiveness of recognition in the two-dimensional QR code. Therefore, this paper proposes a morphology-based algorithm of detecting the interest region of a barcode. Our research contents can be summarized as follows. First, the interest region of a barcode image was detected by close operations in morphology. Second, after that, the boundary of the barcode are detected by intersecting four cross line outside in a code. Three, the projected image is then rectified into a two-dimensional barcode in a square shape by the reverse-perspective transform. In result, it shows that our detection and recognition rates for the barcode image is also 97.20% and 94.80%, respectively and that outperforms than previous methods in various illumination and distorted image environments.

Vessel skeletonization in X-ray angiogram for coronary artery roadmap generation (관상동맥의 로드맵 형성을 위한 X-ray angiogram 에서의 혈관골격추출)

  • Yun, Hyun-Joo;Song, Soo-Min;Kim, Myoung-Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.1661-1664
    • /
    • 2005
  • 본 논문에서는 computer-aided analysis 의 일환으로 X-ray 심혈관 조영도를 이용하여 관상동맥의 구조를 보여주는 방법에 대해 제시하고자 한다. 관상동맥 폐색증 환자들에게 시술되는 스텐트 삽입 시술이나 관상동맥 우회로 시술을 할 때에는 X-ray 의 조영 영상이 매우 중요한 시술의 기준이 되고 있으며, 조영 영상에서 혈관을 빠르고 정확하게 인식하는 것은 시술의 필수 조건이다. 이러한 시술중의 혈관구조 인식을 돕기 위하여 본 논문에서는 심혈관 조영 영상으로부터 관상동맥의 골격을 추출하기 위한 방법을 제안한다. 본 논문에서는 혈관 구조 추출을 위하여 3 단계 알고리즘을 제시한다. 첫번째 단계에서는 조영도에서 잡음을 제거하기 위하여 동질영역을 블러링할 수 있는 speckle reducing anisotropic diffusion 을 이용한 이미지 필터링을 수행한다. 이 필터링은 영상내 잡음을 제거하고 혈관의 경계선을 강화하여 정확한 영상인식을 가능하게 한다. 두번째 단계에서는 영상 내에서 보여지는 주요 혈관을 분할하는 것이다. 이 영상분할에는 canny edge detection 과 개선된 영역확장법(adaptive region growing)을 동시에 이용하는 복합적 분할기법이 수행된다. 세번째 단계에서는 형태학적 기법(Morphology)을 이용하여 분할결과의 부족한 부분을 보완하고 골격화를 수행하여 정확한 혈관 구조를 추출해낸다. 실험을 위해서는 정상인의 관상동맥 영상 뿐 아니라 혈관이 가늘어지는 폐색이 관찰되는 환자의 영상에 대해서도 실험하였다. 또한 논문에서 제시한 알고리즘에 대한 검증을 위하여 실험 결과들은 의료진의 감수를 거쳤다.

  • PDF

Effect of a Preprocessing Method on the Inversion of OH* Chemiluminescence Images Acquired for Visualizing SNG Swirl-stabilized Flame Structure (SNG 선회 안정화 화염구조 가시화를 위한 OH* 자발광 이미지 역변환에서 전처리 효과)

  • Ahn, Kwang Ho;Song, Won Joon;Cha, Dong Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.1
    • /
    • pp.24-31
    • /
    • 2015
  • Flame structure, which contains a useful information for studying combustion instability of the flame, is often quantitatively visualized with PLIF (planar laser-induced fluorescence) and/or chemiluminescence images. The latter, a line-integral of a flame property, needs to be preprocessed before being inverted, mainly due to its inherent noise and the axisymmetry assumption of the inversion. A preprocessing scheme utilizing multi-division of ROI (region of interest) of the chemiluminescence image is proposed. Its feasibility has been tested with OH PLIF and $OH^*$ chemiluminescence images of SNG (synthetic natural gas) swirl-stabilized flames taken from a model gas turbine combustor. It turns out that the multi-division technique outperforms two conventional ones: those are, one without preprocessing and the other with uni-division preprocessing, reconstructing the SNG flame structure much better than its two counterparts, when compared with the corresponding OH PLIF images. It is also found that the Canny edge detection algorithm used for detecting edges in the multi-division method works better than the Sobel algorithm does.

Object based contour detection by using Graph-cut on Stereo Images (스테레오 영상에서의 그래프 컷에 의한 객체 기반 윤곽 추출)

  • Kang, Tae-Hoon;Oh, Jang-Seok;Lee, On-Seok;Ha, Seung-Han;Kim, Min-Gi
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.449-450
    • /
    • 2007
  • 오래 전 부터 영상처리와 컴퓨터 비전은 많은 분야에 응용되고 발전 되어 왔다. 그러한 기술 중에 최근 각광 받고 있는 그래프 짓(Graph cut) 알고리즘은 에너지함수를 최소화 하는 가장 강력한 최적화 기법중 하나이다. 그리고 일반적으로 Sobel, Prewitt, Roberts, Canny 에지(edge) 검출기 등은 영상처리에서 영상상의 에지를 검출하기 위해 이미 널리 사용되고 발전되어 온 기술이다. 물체에서의 윤곽만 검출하기 위해서는 우리가 원하지 않는 영상 위의 에지도 검출되기 때문에 예지 검출기만으로는 물체의 윤곽만을 검출하는 것은 불가능하다. 우리는 물체의 윤곽만 검출하기를 원하기 때문에 그래프 컷과 에지 검출기의 알고리즘을 결합하면 이러한 문제를 해결 할 수 있다는 것을 제안한다. 이 논문에서는 그래프 컷 알고리즘과 에지 검출기에 관해 간략하게 기술하고 그 결과를 보일 것이다.

  • PDF

An End-to-End Sequence Learning Approach for Text Extraction and Recognition from Scene Image

  • Lalitha, G.;Lavanya, B.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.220-228
    • /
    • 2022
  • Image always carry useful information, detecting a text from scene images is imperative. The proposed work's purpose is to recognize scene text image, example boarding image kept on highways. Scene text detection on highways boarding's plays a vital role in road safety measures. At initial stage applying preprocessing techniques to the image is to sharpen and improve the features exist in the image. Likely, morphological operator were applied on images to remove the close gaps exists between objects. Here we proposed a two phase algorithm for extracting and recognizing text from scene images. In phase I text from scenery image is extracted by applying various image preprocessing techniques like blurring, erosion, tophat followed by applying thresholding, morphological gradient and by fixing kernel sizes, then canny edge detector is applied to detect the text contained in the scene images. In phase II text from scenery image recognized using MSER (Maximally Stable Extremal Region) and OCR; Proposed work aimed to detect the text contained in the scenery images from popular dataset repositories SVT, ICDAR 2003, MSRA-TD 500; these images were captured at various illumination and angles. Proposed algorithm produces higher accuracy in minimal execution time compared with state-of-the-art methodologies.

Sensor Fusion Docking System of Drone and Ground Vehicles Using Image Object Detection (영상 객체 검출을 이용한 드론과 지상로봇의 센서 융합 도킹 시스템)

  • Beck, Jong-Hwan;Park, Hee-Su;Oh, Se-Ryeong;Shin, Ji-Hun;Kim, Sang-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.4
    • /
    • pp.217-222
    • /
    • 2017
  • Recent studies for working robot in dangerous places have been carried out on large unmanned ground vehicles or 4-legged robots with the advantage of long working time, but it is difficult to apply in practical dangerous fields which require the real-time system with high locomotion and capability of delicate working. This research shows the collaborated docking system of drone and ground vehicles which combines image processing algorithm and laser sensors for effective detection of docking markers, and is finally capable of moving a long distance and doing very delicate works. We proposed the docking system of drone and ground vehicles with sensor fusion which also suggests two template matching methods appropriate for this application. The system showed 95% docking success rate in 50 docking attempts.

Analysis of Waterbody Changes in Small and Medium-Sized Reservoirs Using Optical Satellite Imagery Based on Google Earth Engine (Google Earth Engine 기반 광학 위성영상을 이용한 중소규모 저수지 수체 변화 분석)

  • Younghyun Cho;Joonwoo Noh
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.363-375
    • /
    • 2024
  • Waterbody change detection using satellite images has recently been carried out in various regions in South Korea, utilizing multiple types of sensors. This study utilizes optical satellite images from Landsat and Sentinel-2 based on Google Earth Engine (GEE) to analyze long-term surface water area changes in four monitored small and medium-sized water supply dams and agricultural reservoirs in South Korea. The analysis covers 19 years for the water supply dams and 27 years for the agricultural reservoirs. By employing image analysis methods such as normalized difference water index, Canny Edge Detection, and Otsu'sthresholding for waterbody detection, the study reliably extracted water surface areas, allowing for clear annual changes in waterbodies to be observed. When comparing the time series data of surface water areas derived from satellite images to actual measured water levels, a high correlation coefficient above 0.8 was found for the water supply dams. However, the agricultural reservoirs showed a lower correlation, between 0.5 and 0.7, attributed to the characteristics of agricultural reservoir management and the inadequacy of comparative data rather than the satellite image analysis itself. The analysis also revealed several inconsistencies in the results for smaller reservoirs, indicating the need for further studies on these reservoirs. The changes in surface water area, calculated using GEE, provide valuable spatial information on waterbody changes across the entire watershed, which cannot be identified solely by measuring water levels. This highlights the usefulness of efficiently processing extensive long-term satellite imagery data. Based on these findings, it is expected that future research could apply this method to a larger number of dam reservoirs with varying sizes,shapes, and monitoring statuses, potentially yielding additional insights into different reservoir groups.

Analysis of Coastline Changes in Yeongdong Region Using Aerial Photos and CORONA Satellite Images (항공사진과 CORONA 위성영상을 이용한 영동지역 해안선 변화 분석)

  • Ahn, Seunghyo;Kim, Gihong;Lee, Hanna
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.187-193
    • /
    • 2022
  • In the Yeongdong region of Gangwon-do, coastal areas are important resources in terms of cultural, social and economic aspects. However, the coast of Gangwon-do is experiencing severe erosion, and it is concerned that its adverse effects will gradually increase. In this study, coastline changes of Yangyang and Gangneung in Gangwon-do were tracked and analyzed over a long period of time. In order to build time series image data, aerial photos from the 1940s to the present were mainly used, and data from CORONA satellite, which operated from the 1960s to the early 1970s, were collected and used together. Using 51cm resolution ortho image and 2m resolution Digital Elevation Model(DEM) as reference, ground control points were selected to perform geometric correction on the aerial photos and CORONA images. Subsequently, Canny edge detector applied to these images to extract the coastlines. As a result of analyzing the extracted and vectorized coastlines by overlaying them in chronological order, erosion and deposition occurring around the artificial structures and on the nearby beaches were observed. In this study, the effect of seasonal variation, tide, and various coastal management including the beach filling were not considered. Because coastal erosion is greatly affected by geographic factors, each local government must find its own solution. Continuous research and local data accumulation are required.

Pixel-level Crack Detection in X-ray Computed Tomography Image of Granite using Deep Learning (딥러닝을 이용한 화강암 X-ray CT 영상에서의 균열 검출에 관한 연구)

  • Hyun, Seokhwan;Lee, Jun Sung;Jeon, Seonghwan;Kim, Yejin;Kim, Kwang Yeom;Yun, Tae Sup
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.184-196
    • /
    • 2019
  • This study aims to extract a 3D image of micro-cracks generated by hydraulic fracturing tests, using the deep learning method and X-ray computed tomography images. The pixel-level cracks are difficult to be detected via conventional image processing methods, such as global thresholding, canny edge detection, and the region growing method. Thus, the convolutional neural network-based encoder-decoder network is adapted to extract and analyze the micro-crack quantitatively. The number of training data can be acquired by dividing, rotating, and flipping images and the optimum combination for the image augmentation method is verified. Application of the optimal image augmentation method shows enhanced performance for not only the validation dataset but also the test dataset. In addition, the influence of the original number of training data to the performance of the deep learning-based neural network is confirmed, and it leads to succeed the pixel-level crack detection.