• Title/Summary/Keyword: Canny 에지

Search Result 102, Processing Time 0.023 seconds

Accurate Spatial Information Mapping System Using MMS LiDAR Data (MMS LiDAR 자료 기반 정밀 공간 정보 매핑 시스템)

  • CHOUNG, Yun-Jae;CHOI, Hyeoung-Wook;PARK, Hyeon-Cheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Mapping accurate spatial information is important for constructing three-dimensional (3D) spatial models and managing artificial facilities, and, especially, mapping road centerlines is necessary for constructing accurate road maps. This research developed a semi-automatic methodology for mapping road centerlines using the MMS(Mobile Mapping System) LiDAR(Light Detection And Ranging) point cloud as follows. First, the intensity image was generated from the given MMS LiDAR data through the interpolation method. Next, the line segments were extracted from the intensity image through the edge detection technique. Finally, the road centerline segments were manually selected among the extracted line segments. The statistical results showed that the generated road centerlines had 0.065 m overall accuracy but had some errors in the areas near road signs.

Shadow Extraction of Urban Area using Building Edge Buffer in Quickbird Image (건물 에지 버퍼를 이용한 Quickbird 영상의 도심지 그림자 추출)

  • Yeom, Jun-Ho;Chang, An-Jin;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.2
    • /
    • pp.163-171
    • /
    • 2012
  • High resolution satellite images have been used for building and road system analysis, landscape analysis, and ecological assessment for several years. However, in high resolution satellite images, shadows are necessarily cast by manmade objects such as buildings and over-pass bridges. This paper develops the shadow extraction procedures in urban area including various land-use classes, and the extracted shadow areas are evaluated by a manually digitized shadow map. For the shadow extraction, the Canny edge operator and the dilation filter are applied to make building edge buffer area. Also, the object-based segmentation was performed using Gram-Schmitt fusion image, and spectral and spatial parameters are calculated from the segmentation results. Finally, we proposed appropriate parameters and extraction rules for the shadow extraction. The accuracy of the shadow extraction results from the various assessment indices is 80% to 90%.

Mobile Phone Camera Based Scene Text Detection Using Edge and Color Quantization (에지 및 컬러 양자화를 이용한 모바일 폰 카메라 기반장면 텍스트 검출)

  • Park, Jong-Cheon;Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.847-852
    • /
    • 2010
  • Text in natural images has a various and important feature of image. Therefore, to detect text and extraction of text, recognizing it is a studied as an important research area. Lately, many applications of various fields is being developed based on mobile phone camera technology. Detecting edge component form gray-scale image and detect an boundary of text regions by local standard deviation and get an connected components using Euclidean distance of RGB color space. Labeling the detected edges and connected component and get bounding boxes each regions. Candidate of text achieved with heuristic rule of text. Detected candidate text regions was merged for generation for one candidate text region, then text region detected with verifying candidate text region using ectilarity characterization of adjacency and ectilarity between candidate text regions. Experctental results, We improved text region detection rate using completentary of edge and color connected component.

Color Code Detection and Recognition Using Image Segmentation Based on k-Means Clustering Algorithm (k-평균 클러스터링 알고리즘 기반의 영상 분할을 이용한 칼라코드 검출 및 인식)

  • Kim, Tae-Woo;Yoo, Hyeon-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1100-1105
    • /
    • 2006
  • Severe distortions of colors in the obtained images have made it difficult for color codes to expand their applications. To reduce the effect of color distortions on reading colors, it will be more desirable to statistically process as many pixels in the individual color region as possible, than relying on some regularly sampled pixels. This process may require segmentation, which usually requires edge detection. However, edges in color codes can be disconnected due tovarious distortions such as zipper effect and reflection, to name a few, making segmentation incomplete. Edge linking is also a difficult process. In this paper, a more efficient approach to reducing the effect of color distortions on reading colors, one that excludes precise edge detection for segmentation, was obtained by employing the k-means clustering algorithm. And, in detecting color codes, the properties of both six safe colors and grays were utilized. Experiments were conducted on 144, 4M-pixel, outdoor images. The proposed method resulted in a color-code detection rate of 100% fur the test images, and an average color-reading accuracy of over 99% for the detected codes, while the highest accuracy that could be achieved with an approach employing Canny edge detection was 91.28%.

  • PDF

Iris Change Analysis that Using Differential Image (차영상을 이용한 홍채 변화 분석)

  • 김남식;김장형
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.932-934
    • /
    • 2003
  • In this paper, time, studied about method that can analyze iris change to using differential image of iris image that put interval and films and utilize as patient's health examination according to iris change. Time, Differential mage of iris image that put interval and films ran be used usefully to search early diagnosis of disease and unfolding process etc.. of disease by showing definitely change by tine. In the case of iris diagnostic system, iris outside area extracts iris area and uses Differential image of before filming image and image that film present to use canny edge detector as there is cay to extract iris area as do not help in diagnostic and change analyzed comparison.

  • PDF

Detection of Pavement Borderline in Natural Scene using Radial Region Split for Visually Impaired Person (방사형 영역 분할법에 의한 자연영상에서의 보도 경계선 검출)

  • Weon, Sun-Hee;Kim, Gye-Young;Na, Hyeon-Suk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.7
    • /
    • pp.67-76
    • /
    • 2012
  • This paper proposes an efficient method that helps a visually impaired person to detect a pavement borderline. A pedestrian is equipped with a camera so that the front view of a natural scene is captured. Our approach analyzes the captured image and detects the borderline of a pavement in a very robust manner. Our approach performs the task in two steps. In a first step, our approach detects a vanishing point and vanishing lines by applying an edge operator. The edge operator is designed to take a threshold value adaptively so that it can handle a dynamic environment robustly. The second step is to determine the borderlines of a pavement based on vanishing lines detected in the first step. It analyzes the vanishing lines to form VRays that confines the pavement only. The VRays segments out the pavement region in a radial manner. We compared our approach against Canny edge detector. Experimental results show that our approach detects borderlines of a pavement very accurately in various situations.

Mosaic Detection Based on Edge Projection in Digital Video (비디오 데이터에서 에지 프로젝션 기반의 모자이크 검출)

  • Jang, Seok-Woo;Huh, Moon-Haeng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.339-345
    • /
    • 2016
  • In general, mosaic blocks are used to hide some specified areas, such as human faces and disgusting objects, in an input image when images are uploaded on a web-site or blog. This paper proposes a new algorithm for robustly detecting grid mosaic areas in an image based on the edge projection. The proposed algorithm first extracts the Canny edges from an input image. The algorithm then detects the candidate mosaic blocks based on horizontal and vertical edge projection. Subsequently, the algorithm obtains real mosaic areas from the candidate areas by eliminating the non-mosaic candidate regions through geometric features, such as size and compactness. The experimental results showed that the suggested algorithm detects mosaic areas in images more accurately than other existing methods. The suggested mosaic detection approach is expected to be utilized usefully in a variety of multimedia-related real application areas.

A Combined Hough Transform based Edge Detection and Region Growing Method for Region Extraction (영역 추출을 위한 Hough 변환 기반 에지 검출과 영역 확장을 통합한 방법)

  • N.T.B., Nguyen;Kim, Yong-Kwon;Chung, Chin-Wan;Lee, Seok-Lyong;Kim, Deok-Hwan
    • Journal of KIISE:Databases
    • /
    • v.36 no.4
    • /
    • pp.263-279
    • /
    • 2009
  • Shape features in a content-based image retrieval (CBIR) system are divided into two classes: contour-based and region-based. Contour-based shape features are simple but they are not as efficient as region-based shape features. Most systems using the region-based shape feature have to extract the region firs t. The prior works on region-based systems still have shortcomings. They are complex to implement, particularly with respect to region extraction, and do not sufficiently use the spatial relationship between regions in the distance model In this paper, a region extraction method that is the combination of an edge-based method and a region growing method is proposed to accurately extract regions inside an object. Edges inside an object are accurately detected based on the Canny edge detector and the Hough transform. And the modified Integrated Region Matching (IRM) scheme which includes the adjacency relationship of regions is also proposed. It is used to compute the distance between images for the similarity search using shape features. The experimental results show the effectiveness of our region extraction method as well as the modified IRM. In comparison with other works, it is shown that the new region extraction method outperforms others.

Container Recognition System using Fuzzy RBF Network (퍼지 RBF 네트워크를 이용한 컨테이너 인식 시스템)

  • Kim, Jae-Yong;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.497-503
    • /
    • 2005
  • 본 논문에서는 퍼지 RBF 네트워크를 이용한 운송 컨테이너 식별자 인식 시스템을 제안한다. 일반적으로 운송 컨테이너의 식별자들은 크기나 위치가 정형화되어 있지 않고 외부 잡음으로 인하여 식별자의 형태가 변형될 수 있기 때문에 일정한 규칙으로 찾기는 힘들다. 본 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, 검출된 에지 정보에서 영상획득 시 외부 광원에 의해 수직으로 길게 발생하는 잡음들을 퍼지 추론 방법을 적용하여 제거한 후에 수직 블록과 수평 블록을 검출하여 컨테이너의 식별자 영역을 추출하고 이진화한다. 이진화된 식별자 영역에 대해 검정색의 빈도수를 이용하여 흰바탕과 민바탕을 구분하고 4방향 윤광선 추적 알고리즘을 적용하여 개별 식별자를 추출한다. 개별 식별자 인식을 위해 퍼지 C-Means 알고리즘을 이용한 퍼지 RBF 네트워크를 제안하여 개별 식별자에 적용한다. 제안된 퍼지 RBF 네트워크는 퍼지 C-Means 알고리즘을 중간층으로 적용하고 중간층과 출력층 간의 학습에는 일반화된 델타 학습 방법과Delta-bar-Delta 알고리즘을 적용하여 학습 성능을 개선한다. 실제 컨테이너 영상을 대상으로 실험한 결과, 기존의 식별자 추출 방법보다 제안된 식별자 추출방법이 개선되었다. 그리고 기존의 ART2 기반 RBF 네트워크보다 제안된 퍼지 RBF 네트워크가 컨테이너 식별자의 학습 및 인식에 있어서 우수함을 확인하였다.

  • PDF

A Method for Extracting Mosaic Blocks Using Boundary Features (경계 특징을 이용한 모자이크 블록 추출 방법)

  • Jang, Seok-Woo;Park, Young-Jae;Huh, Moon-Haeng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2949-2955
    • /
    • 2015
  • Recently, with the sharp increase of digital visual media such as photographs, animations, and digital videos, it has been necessary to generate mosaic blocks in a static or dynamic image intentionally or unintentionally. In this paper, we suggest a new method for detecting mosaic blocks contained in a color image using boundary features. The suggested method first extracts Canny edges in the image and finds candidate mosaic blocks with the boundary features of mosaic blocks. The method then determines real mosaic blocks after filtering out non-mosaic blocks using geometric features like size and elongatedness features. Experimental results show that the proposed method can detect mosaic blocks robustly rather than other methods in various types of input images.