• Title/Summary/Keyword: Candidate region

Search Result 631, Processing Time 0.037 seconds

살색 정보와 타원 모양 정보를 이용한 얼굴 검출 기법 (A Face Detection Algorithm using Skin Color and Elliptical Shape Information)

  • 강성화;김휘용;김성대
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(4)
    • /
    • pp.41-44
    • /
    • 2000
  • In this paper, we present an efficient face detection algorithm for locating vertical views of human faces in complex scenes. The algorithm models the distribution of human skin color in YCbCr color space and find various ace candidate regions. Face candidate regions are found by thresholding with predetermined thresholds. For each of these face candidate regions, The sobel edge operator is used to find edge regions. For each edge region, we used an ellipse detection algorithm which is similar to hough transform to refine the candidate region. Finally if a substantial number of he facial features (eye, mouth) are found successfully in the candidate region, we determine he ace candidate region as a face region. e show empirically that the presented algorithm an find the face region very well in the complex scenes.

  • PDF

A New Bank-card Number Identification Algorithm Based on Convolutional Deep Learning Neural Network

  • Shi, Rui-Xia;Jeong, Dong-Gyu
    • International journal of advanced smart convergence
    • /
    • 제11권4호
    • /
    • pp.47-56
    • /
    • 2022
  • Recently bank card number recognition plays an important role in improving payment efficiency. In this paper we propose a new bank-card number identification algorithm. The proposed algorithm consists of three modules which include edge detection, candidate region generation, and recognition. The module of 'edge detection' is used to obtain the possible digital region. The module of 'candidate region generation' has the role to expand the length of the digital region to obtain the candidate card number regions, i.e. to obtain the final bank card number location. And the module of 'recognition' has Convolutional deep learning Neural Network (CNN) to identify the final bank card numbers. Experimental results show that the identification rate of the proposed algorithm is 95% for the card numbers, which shows 20% better than that of conventional algorithm or method.

차량의 헤드라이트에 강인한 실시간 객체 영역 검출 (Realtime Object Region Detection Robust to Vehicle Headlight)

  • 연승호;김재민
    • 한국멀티미디어학회논문지
    • /
    • 제18권2호
    • /
    • pp.138-148
    • /
    • 2015
  • Object detection methods based on background learning are widely used in video surveillance. However, when a car runs with headlights on, these methods are likely to detect the car region and the area illuminated by the headlights as one connected change region. This paper describes a method of separating the car region from the area illuminated by the headlights. First, we detect change regions with a background learning method, and extract blobs, connected components in the detected change region. If a blob is larger than the maximum object size, we extract candidate object regions from the blob by clustering the intensity histogram of the frame difference between the mean of background images and an input image. Finally, we compute the similarity between the mean of background images and the input image within each candidate region and select a candidate region with weak similarity as an object region.

자동유방초음파 장비의 액와부 평가를 위한 초음파 패드 물질의 타당성 (Feasibility for Ultrasound Pad Material for the Evaluation Axillary Region of Automated Breast Ultrasound Equipment)

  • 서은희;성열훈
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제41권3호
    • /
    • pp.231-240
    • /
    • 2018
  • Automated breast ultrasound (ABUS) equipment is a new innovative technique for 3D automatic breast scanning, but limited for the examination in the concave axillary region. The purpose of this study was to determine feasible candidate materials for the ultrasonic wave propagation media in ABUS, enabling the evaluation of the axillary region. Ultrasonography was performed using an ABUS system ($Invenia^{TM}ABUS$, GE, USA) on the ultrasound-specific phantom (UC-551M-0.5, ATS Laboratories, USA) covered by different candidate materials. The validity of feasible candidate materials was evaluated by image quality. Three independent radiological technologists, with more than 10 years of experience, visually assessed on the images. The inter-observer agreements according to the candidate materials were tested using Cronbach's alpha. Unenveloped solidified carrageenan can be a feasible material for the use of ABUS with excellent test reliability. Therefore, the coverage of the axillary region with carrageenan may be effective for ABUS which was originally developed for the convex anatomic structure as female breast.

Real-Time Rotation-Invariant Face Detection Using Combined Depth Estimation and Ellipse Fitting

  • Kim, Daehee;Lee, Seungwon;Kim, Dongmin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제1권2호
    • /
    • pp.73-77
    • /
    • 2012
  • This paper reports a combined depth- and model-based face detection and tracking approach. The proposed algorithm consists of four functional modules; i) color-based candidate region extraction, ii) generation of the depth histogram for handling occlusion, iii) rotation-invariant face region detection using ellipse fitting, and iv) face tracking based on motion prediction. This technique solved the occlusion problem under complicated environment by detecting the face candidate region based on the depth-based histogram and skin colors. The angle of rotation was estimated by the ellipse fitting method in the detected candidate regions. The face region was finally determined by inversely rotating the candidate regions by the estimated angle using Haar-like features that were robustly trained robustly by the frontal face.

  • PDF

적응적 다중 시드 영역 확장법을 이용한 구조적 패턴의 보도 영역 검출 (Detection of Pavement Region with Structural Patterns through Adaptive Multi-Seed Region Growing)

  • 원선희;주성일;나현숙;최형일
    • 정보처리학회논문지B
    • /
    • 제19B권4호
    • /
    • pp.209-220
    • /
    • 2012
  • 본 논문에서는 보행자에 장착된 카메라로부터 입력된 자연영상에서의 구조적 패턴 변화에 강인한 적응적인 보도 영역 검출 기법을 제안한다. 제안하는 방법에서는 다양한 패턴을 가지는 보도 환경에서 안정적으로 보도 영역을 분할하기 위해 첫 번째 단계에서는 소실점에 기반하는 VRay를 이용한 방사형 영역 분할법을 통해 보도의 경계선을 검출하여 보도의 후보영역을 분리하며, 두 번째 단계에서는 분리된 후보영역 내에서의 시드 영역 확장법(SRG)을 개선한 적응적 다중 시드 영역 확장법(A-MSRG)를 통해 구조적 패턴이 반복되는 보도 영역을 실시간으로 검출하는 방법을 수행한다. 성능평가를 위해 제안된 방사형 영역 분할법과 A-MSRG와의 결합에 의한 영역 검출 결과의 효율성을 측정한다. 기존의 SRG, MSRG 방법과의 비교 수행을 통해 제안된 방법의 타당성을 입증하였다.

Adaptive Video-Dissolve Detection Method Based on Correlation Between Two Scenes

  • Won, Jong-Un;Park, Jae-Gark;Chung, Yoon-su;Park, Kil-Houm
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -3
    • /
    • pp.1519-1522
    • /
    • 2002
  • In this paper, we propose a new adaptive dissolve detection method based on the analysis of a dissolve modeling error that is the difference between an ideally modeled dissolve curve without any correlation and an actual variance curve with a correlation. The dissolve modeling error is determined based on a correlation between two scenes and variances for each scene. First, Candidate regions are extracted by using the characteristics of a parabola that is downward convex, then the candidate region will be verified based on a dissolve modeling error. If a dissolve modeling error on a candidate region is less than a threshold that is defined by a dissolve modeling error with a target correlation, the candidate region should be a dissolve region with a correlation less than the target correlation. The threshold is adaptively determined based on the variances between the candidate regions and the target correlation. By considering the correlation between neighbor scenes, the proposed method is able to be a semantic scene-change detector. The proposed algorithm was tested on various types of data and its performance proved to be more accurate and reliable when compared with other commonly used methods

  • PDF

피부색 정보와 투영 기법에 기반한 적응적 얼굴 영역 추출 (Adaptive face Region Extraction Based on Skin Color Information and Projection)

  • 임주혁;배성호;송근원
    • 한국멀티미디어학회논문지
    • /
    • 제8권5호
    • /
    • pp.633-640
    • /
    • 2005
  • 본 논문에서는 피부객 정보와 투영 기법에 기반한 적응적 얼굴 영역 추출 알고리즘을 제안하였다. 제안한 기법은 피부색 정보에 기반한 얼굴 후보 영역 추출 단계와 투영 단계로 구성된다 얼굴 후보 영역 추출 단계에서는 먼저 입력 영상에서 피부색 구간 범위로 피부색 후보 화소들을 추출하였다. 그리고 피부색 후보 화소로 추정된 화소 수와 전체 화소수의 비를 계산하고, 이에 따라 적응적인 피부색 구간 문턱 값을 설정하여 얼굴 후보 영역을 추출하였다. 투영 단계에서는 얼굴 폭 추정을 위해 추출된 얼굴 후보 영역을 수직 투영을 하였다. 그리고 추정된 얼굴의 폭 정보는 얼굴의 길이 추정을 위한 수평 투영 시에 이용하였다. 다양한 영상들에 대한 실험 결과 제안한 알고리즘은 기존의 얼굴 영역 추출 알고리즘보다 정확한 얼굴 영역 추출 결과를 보였다.

  • PDF

측면 얼굴 검출을 위한 적응적 영역 분할 기법 (The adaptive partition method of skin-tone region for side-view face detection)

  • 송영준;장언동;김관동
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2003년도 추계종합학술대회 논문집
    • /
    • pp.223-226
    • /
    • 2003
  • 칼라 영상에서 측면 얼굴 검출시 피부색 검출에 의해 얼굴 후보 영역을 결정하고 템플릿 매칭에 의해 최종 얼굴을 확인하는 방법이 있다. Gang Wei는 측면 얼굴의 좌우 템플릿과 hausdorff 방법에 의한 유사도 측정으로 얼굴 영역을 결정하였다. 이때 측면얼굴은 목 부분이 넓게 퍼져 있는 부분에서 정확도를 높이기 위해 반복 분할 과정을 수행하여 수직 방향으로 3화소 단위로 분할하여 템플릿 매칭을 하였다. 본 논문에서는 측면 얼굴이 좌측 또는 우측 얼굴중의 하나라는 가정 아래, 일단 피부색에 의한 얼굴후보 영역을 수직으로 1/2로 분리한 후 좌측은 좌측후보, 우측은 우측 후보로 가정하여 템플릿 매칭을 하여 좌/우 얼굴을 인식한다. 이는 기존 연구 방식에 비해 적은 분할로 빠른 얼굴 검출을 할 수 있다.

  • PDF

3D LIDAR 반사율을 이용한 무인지상차량의 주행가능 후보 영역 분석 (Analysis of Traversable Candidate Region for Unmanned Ground Vehicle Using 3D LIDAR Reflectivity)

  • 김준;안성용;민지홍;배건성
    • 대한기계학회논문집A
    • /
    • 제41권11호
    • /
    • pp.1047-1053
    • /
    • 2017
  • 무인지상차량의 자율주행을 위한 핵심센서로 사용되는 2D/3D 라이다(LIDAR) 센서에서 제공되는 거리 데이터는 지면 모델링 및 장애물 검출을 위해 효과적으로 활용되지만, 도로의 경계가 모호한 환경 등에서는 주행가능영역에 대한 분석이 어렵게 된다. 본 논문에서는 라이다의 반사율 특성을 이용하여 무인차량의 주행 가능한 영역에 대한 후보 영역을 추가로 분석함으로써 보다 효과적으로 주행가능영역을 검출할 수 있는 기법을 제안하였다. 3D LIDAR의 반사율을 보정하고 무인차량 전방 영역의 반사율에 대한 학습을 통해 주행가능 후보영역을 검출하였으며, 무인차량 실제 운용환경에서의 실험을 통해 후보영역 검출 결과를 검증하였다.