• Title/Summary/Keyword: Candidate gene association study

Search Result 230, Processing Time 0.021 seconds

Association Study between Genetic Polymorphisms of CYP2C19 Gene and Essential Hypertension in Koreans (한국인에서 CYP2C19 유전자 다형성과 본태성 고혈압 간의 연관성 연구)

  • Park, Ah-Ram;Shin, Eun-Soon;Son, Nak-Hoon;Jang, Yang-Soo;Shin, Dong-Jik
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.799-804
    • /
    • 2010
  • In humans, CYP2C19, a member of the cytochrome P450 subfamily, metabolizes arachidonic acid to produce epoxyicosanoid acids, which are involved in vascular tone and regulation of blood pressure (BP). Recent findings suggest that CYP2C19 gene polymorphisms might be considered as a novel candidate gene for cardiovascular disease. We thus focused on the Korean population to explore the association of two polymorphisms ($CYP2C19^*2$ and $^*3$) in this gene and essential hypertension (EH). A total of 1,241 participants (537 hypertensive subjects and 704 healthy controls) were recruited from the Yonsei Cardiovascular Genome Center in Korea. The CYP2C19 polymorphisms were genotyped using the $SNaPShot^{TM}$ assay. The allele and genotype frequencies of $CYP2C19^*3$ showed significant difference between hypertensives and normotensives (P=0.019 and P=0.023, respectively). Logistic regression analysis indicated that the $CYP2C19^*3$ A allele carriers were significantly associated with EH (OR, 0.723; 95% CI, 0.538-0.972, P=0.032) under a dominant model. In addition, CYP2C19 G-A haplotype ($2C19^*2\;G-^*3$ A combination) was found to significantly reduce EH risk (OR, 0.714, P=0.015). We believe this provides evidence that $CYP2C19^*3$ polymorphism may contribute to a protective effect in the development of EH.

Association analysis of polymorphisms of G protein-coupled receptor 54 gene exons with reproductive traits in Jiaxing Black sows

  • Wu, Fen;Zhang, Wei;Song, Qian-Qian;Li, Hai-Hong;Xu, Ming-Shu;Liu, Guo-Liang;Zhang, Jin-Zhi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8
    • /
    • pp.1104-1111
    • /
    • 2019
  • Objective: The aim of this study was to detect single nucleotide polymorphisms (SNP) of G protein-coupled receptor 54 (GPR54) gene and explore association of this candidate gene with reproductive traits in Jiaxing Black sows. Methods: Six pairs of primers of the gene were designed to amplify all exons thus sequences of which were detected by means of direct sequencing and then SNP loci were scanned. The effects of SNPs on total number of piglets born (TNB), number of piglets born alive (NBA), number of still born piglets (NSB), and litter weight at birth (LWB) of Jiaxing Black sows were analyzed. Results: Three SNP loci, including T3739C, C3878T and T6789C, were identified via comparison of sequencing and two genotypes (AB, BB) at each SNP site were observed. T3739C resulted in the change of amino acid ($Leu{\rightarrow}Pro$) in corresponding protein, and C3878T resulted in synonymous mutation ($Ile{\rightarrow}Ile$). Statistical results demonstrated that allele B was the preponderant allele at the three SNP loci and Genotype BB was the preponderant genotype. Meanwhile, Chi-Square test of these three SNPs indicated that all mutation sites fitted in Hardy-Weinberg equilibrium (p>0.05). For GPR54-T3739C locus, Jiaxing Black sows with genotype BB had 1.23 TNB and 1.28 NBA (p<0.01) that were more than those with genotype AB, respectively. Jiaxing Black sows that had the first two parities with genotype BB had additional 2.23 TNB, 2.27 NBA (p<0.01), and 1.94 LWB (p<0.05) compared to those with genotype AB, respectively. However, for other two loci, no significant difference was found between TNB, NBA, NSB, and LWB, and different genotypes of Jiaxing Black sows. Conclusion: In conclusion, the polymorphisms of GPR54-T3739C locus were significantly associated to TNB, NBA, and LWB and could be used as a potential genetic marker to improve reproductive function of Jiaxing black sows.

Association study analysis of phospholipase C zeta gene polymorphism forsperm motility and kinematic characteristics in liquid semen of Boar (Phospholipase C zeta 유전자의 유전적다형성과 돼지 액상정액의 운동학적 특성과의 연관성 분석)

  • Jeong, Yong-dae;Jeong, Jin-Young;Sa, Soo-Jin;Kim, Ki-Hyun;Cho, Eun-Seok;Yu, Dong-Jo;Park, Sungk-won;Jang, Hyun-Jun;Woo, Jae-Seok;Choi, Jung-Woo
    • Journal of Embryo Transfer
    • /
    • v.31 no.3
    • /
    • pp.293-297
    • /
    • 2016
  • For evaluating the boar semen quality, sperm motility is an important parameter because the movement of sperm indicates active metabolism, membrane integrity and fertilizing capacity. Phospholipase C zeta (PLCz) is important enzyme in spermatogenesis, but the effect has not been confirmed in pigs yet. Therefore, this study was aimed to analyze their association with sperm motility and kinematic characteristics. DNA samples from 124 Duroc pigs with records of sperm motility and kinematic characteristics [total motile spermatozoa (MOT), curvilinear velocity (VCL), straight-line velocity (VSL), the ratio between VSL and VCL (LIN), amplitude of lateral head displacement (ALH)] were subjected. A SNP in non-coding region of PLCz g.158 A > C was associated with MOT (p < 0.05), VCL (p < 0.01), LIN (p < 0.01) and ALH (p < 0.05) in Duroc population. Therefore, we suggest that the intron region of the porcine PLCz gene may be used as a molecular marker for Duroc boar semen quality, although its functional effect was not defined yet. Whether the association is due to the candidate gene or not require further verification. Thus, it will be of interest to continue association studies in the regions surrounding those genes.

Lack of Influence of the SMAD7 Gene rs2337107 Polymorphism on Risk of Colorectal Cancer in an Iranian Population

  • Akbari, Zahra;Safari-Alighiarloo, Nahid;Haghighi, Mahdi Montazer;Vahedi, Mohsen;Mirtalebi, Hanieh;Azimzadeh, Pedram;Milanizadeh, Saman;Shemirani, Atena Irani;Nazemalhosseini-Mojarad, Ehsan;Aghdaei, Hamid Asadzadeh;Zali, Mohammad Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4437-4441
    • /
    • 2014
  • SMAD7 has been identified as a functional candidate gene for colorectal cancer (CRC). SMAD7 protein is a known antagonist of the transforming growth factor beta ($TGF-{\beta}$) signaling pathway which is involved in tumorigenesis. Polymorphisms in SMAD7 may thus alter cancer risk. The aim of this study was to investigate the influence of a SMAD7 gene polymorphism (rs2337107) on risk of CRC and clinicopathological features in an Iranian population. In total, 210 subjects including 105 patients with colorectal cancer and 105 healthy controls were recruited in our study. All samples were genotyped by TaqMan assay via an ABI 7500 Real Time PCR System (Applied Biosystems) with DNA from peripheral blood. The polymorphism was statistically analyzed to investigate the relationship with the risk of colorectal cancer and clinicopathological properties. Logistic regression analysis revealed that there was no significant association between rs2337107and the risk of colorectal cancer. In addition, no significant association between genotypes and clinicopathological features was observed (p value>0.05). Although there was not any association between genotypes and disorder, CT was the most common genotype in this population. This genotype prevalence was also higher in the patients with well grade (54.9%) and colon (72.0%) tumors. Our results provide the first evidence that this polymorphism is not a potential contributor to the risk of colorectal cancer and clinicopathological features in an Iranian population, and suggests the need of a large-scale case-control study to validate our results.

Comparative analysis on genome-wide DNA methylation in longissimus dorsi muscle between Small Tailed Han and Dorper×Small Tailed Han crossbred sheep

  • Cao, Yang;Jin, Hai-Guo;Ma, Hui-Hai;Zhao, Zhi-Hui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.11
    • /
    • pp.1529-1539
    • /
    • 2017
  • Objective: The objective of this study was to compare the DNA methylation profile in the longissimus dorsi muscle between Small Tailed Han and Dorper${\times}$Small Tailed Han crossbred sheep which were known to exhibit significant difference in meat-production. Methods: Six samples (three in each group) were subjected to the methylated DNA immunoprecipitation sequencing (MeDIP-seq) and subsequent bioinformatics analyses to detect differentially methylated regions (DMRs) between the two groups. Results: 23.08 Gb clean data from six samples were generated and 808 DMRs were identified in gene body or their neighboring up/downstream regions. Compared with Small Tailed Han sheep, we observed a tendency toward a global loss of DNA methylation in these DMRs in the crossbred group. Gene ontology enrichment analysis found several gene sets which were hypomethylated in gene-body region, including nucleoside binding, motor activity, phospholipid binding and cell junction. Numerous genes were found to be differentially methylated between the two groups with several genes significantly differentially methylated, including transforming growth factor beta 3 (TGFB3), acyl-CoA synthetase long chain family member 1 (ACSL1), ryanodine receptor 1 (RYR1), acyl-CoA oxidase 2 (ACOX2), peroxisome proliferator activated receptor-gamma2 (PPARG2), netrin 1 (NTN1), ras and rab interactor 2 (RIN2), microtubule associated protein RP/EB family member 1 (MAPRE1), ADAM metallopeptidase with thrombospondin type 1 motif 2 (ADAMTS2), myomesin 1 (MYOM1), zinc finger, DHHC type containing 13 (ZDHHC13), and SH3 and PX domains 2B (SH3PXD2B). The real-time quantitative polymerase chain reaction validation showed that the 12 genes are differentially expressed between the two groups. Conclusion: In the current study, a tendency to a global loss of DNA methylation in these DMRs in the crossbred group was found. Twelve genes, TGFB3, ACSL1, RYR1, ACOX2, PPARG2, NTN1, RIN2, MAPRE1, ADAMTS2, MYOM1, ZDHHC13, and SH3PXD2B, were found to be differentially methylated between the two groups by gene ontology enrichment analysis. There are differences in the expression of 12 genes, of which ACSL1, RIN2, and ADAMTS2 have a negative correlation with methylation levels and the data suggest that DNA methylation levels in DMRs of the 3 genes may have an influence on the expression. These results will serve as a valuable resource for DNA methylation investigations on screening candidate genes which might be related to meat production in sheep.

Genetic signature of strong recent positive selection at interleukin-32 gene in goat

  • Asif, Akhtar Rasool;Qadri, Sumayyah;Ijaz, Nabeel;Javed, Ruheena;Ansari, Abdur Rahman;Awais, Muhammd;Younus, Muhammad;Riaz, Hasan;Du, Xiaoyong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.912-919
    • /
    • 2017
  • Objective: Identification of the candidate genes that play key roles in phenotypic variations can provide new information about evolution and positive selection. Interleukin (IL)-32 is involved in many biological processes, however, its role for the immune response against various diseases in mammals is poorly understood. Therefore, the current investigation was performed for the better understanding of the molecular evolution and the positive selection of single nucleotide polymorphisms in IL-32 gene. Methods: By using fixation index ($F_{ST}$) based method, IL-32 (9375) gene was found to be outlier and under significant positive selection with the provisional combined allocation of mean heterozygosity and $F_{ST}$. Using nucleotide sequences of 11 mammalian species from National Center for Biotechnology Information database, the evolutionary selection of IL-32 gene was determined using Maximum likelihood model method, through four models (M1a, M2a, M7, and M8) in Codeml program of phylogenetic analysis by maximum liklihood. Results: IL-32 is detected under positive selection using the $F_{ST}$ simulations method. The phylogenetic tree revealed that goat IL-32 was in close resemblance with sheep IL-32. The coding nucleotide sequences were compared among 11 species and it was found that the goat IL-32 gene shared identity with sheep (96.54%), bison (91.97%), camel (58.39%), cat (56.59%), buffalo (56.50%), human (56.13%), dog (50.97%), horse (54.04%), and rabbit (53.41%) respectively. Conclusion: This study provides evidence for IL-32 gene as under significant positive selection in goat.

Associations of Polymorphisms in Four Immune-related Genes with Antibody Kinetics and Body Weight in Chickens

  • Ahmed, A.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.8
    • /
    • pp.1089-1095
    • /
    • 2010
  • Four biological candidate genes, natural resistance associated macrophage protein 1 (SLC11A1 or NRAMP), prosaposin (PSAP), interferon Gamma (IFNG), and toll-like receptor 4 (TLR4), were examined to identify single nucleotide polymorphisms (SNP) and associations of the SNP with antibody response kinetics in hens. An $F_2$ population was produced by mating $G_0$ highly inbred (<99%) males of two MHC-congenic Fayoumi lines with highly inbred Leghorn hens. The $F_2$ hens (n = 158) were injected twice with SRBC and whole, fixed Brucella abortus (BA). Blood samples were obtained before each immunization, at 7 d after primary immunization, and at several time points after secondary immunization. Minimum titers (Ymin) and the time needed to reach them (Tmin), and maximum (Ymax) titers and the time needed to reach them (Tmax), were estimated from the seven post-secondary immunization titers using a nonlinear regression model. The $F_2$ hens were genotyped for the four candidate genes by using PCR-RFLP for one SNP per gene, which identified the parental allele. General linear models were used to test associations of SNP genotypes with antibody response parameters and BW measured at 4 ages. The IFNG SNP was highly significantly (p<0.0125) associated with primary response to SRBC, Tmin to BA, Ymin to BA, and 12-week BW. The current study demonstrated that the novel IFNG promoter SNP was associated with antibody kinetics for BA and SRBC in laying hens, and also with BW, suggesting that this cytokine may play a pivotal role in the relationship between immune function and growth.

Salt-sensitive genes and their relation to obesity (소금민감성유전자와 비만)

  • Cheon, Yong-Pil;Lee, Myoungsook
    • Journal of Nutrition and Health
    • /
    • v.50 no.3
    • /
    • pp.217-224
    • /
    • 2017
  • Purpose: Although it is well known thatmortality and morbidity due to cardiovascular diseases are higher in salt-sensitive subjects than in salt-resistant subjects, their underlying mechanisms related to obesity remain unclear. Here, we focused on salt-sensitive gene variants unrelated to monogenic obesity that interacted with sodium intake in humans. Methods: This review was written based on the modified $3^rd$ step of Khans' systematic review. Instead of the literature, subject genes were based on candidate genes screened from our preliminary Genome-Wide Association Study (GWAS). Finally, literature related to five genes strongly associated with salt sensitivity were analyzed to elucidate the mechanism of obesity. Results: Salt sensitivity is a measure of how blood pressure responds to salt intake, and people are either salt-sensitive or salt-resistant. Otherwise, dietary sodium restriction may not be beneficial for everyone since salt sensitivity may be associated with inherited susceptibility. According to our previous GWAS studies, 10 candidate genes and 11 single nucleotide polymorphisms (SNPs) associated with salt sensitivity were suggested, including angiotensin converting enzyme (ACE), ${\alpha}$-adducin1 (ADD1), angiotensinogen (AGT), cytochrome P450 family 11-subfamily ${\beta}$-2 ($CYP11{\beta}$-2), epithelial sodium channel (ENaC), G-protein b3 subunit (GNB3), G protein-coupled receptor kinases type 4 (GRK4 A142V, GRK4 A486V), $11{\beta}$-hydroxysteroid dehydrogenase type-2 (HSD $11{\beta}$-2), neural precursor cell-expressed developmentally down regulated 4 like (NEDD4L),and solute carrier family 12(sodium/chloride transporters)-member 3 (SLC 12A3). We found that polymorphisms of salt-sensitive genes such as ACE, $CYP11{\beta}$-2, GRK4, SLC12A3, and GNB3 may be positively associated with human obesity. Conclusion: Despite gender, ethnic, and age differences in genetics studies, hypertensive obese children and adults who are carriers of specific salt-sensitive genes are recommended to reduce their sodium intake. We believe that our findings can contribute to the prevention of early-onset of chronic diseases in obese children by facilitating personalized diet-management of obesity from childhood to adulthood.

Co-expression and Sequence Determination of Estrogen Receptor Variant Messenger RNAs in Swine Uterus

  • Ying, C.;Chan, M.-A.;Cheng, W.T.K.;Hong, W.-F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1716-1721
    • /
    • 2003
  • Steroid hormones and their receptors play an important role in reproductive process. Estrogen is intimately involved with pregnancy and its function is mediated through the estrogen receptor which has been chosen as a candidate gene to study litter size in pigs. In this study, we report that two estrogen receptor variants, designated pER-1 and pER-2 were co-expressed in the uteri of normal cycling Lan-Yu pig (Sus vittatus; a small-ear miniature in Taiwan) with the pER-1 expression level appeared to be several times higher than that of pER-2. These receptor variants were isolated using reverse transcription-PCR from the pig uteri and their sequences were determined. The pER-1 and pER-2 sequences, which are homologous to those found in other mammalian estrogen receptors, encode putative proteins consisting of 574 and 486 amino acids, respectively. A deletion in exon I was identified in both sequences, with deletion lengths of 63 bp in pER-1 and 327 bp in pER-2. The deletion in pER-1 is internal to that in pER-2 and both deletions resulted in a truncation of the B domain, which confers the transactivating activity of estrogen receptor protein. This result describes the existence of estrogen receptor variants with a deletion in exon I and implies the possibility that physiological functioning of an estrogen receptor may not require the presence of an intact B domain.

A Study on the Prolactin Receptor 3 (PRLR3) Gene and the Retinol-binding Protein 4 (RBP4) Gene as Candidate Genes for Growth and Litter Size Traits of Berkshire in Korea (국내 버크셔 돼지에서 성장 및 산자수의 후보유전자로서 PRLR3와 RBP4에 관한 연구)

  • Do, Chang-Hee;Kim, Seon-Ku;Kang, Han-Suk;Shin, Teak-Soon;Lee, Hong-Gu;Cho, Seong-Keun;Do, Kyung-Tak;Song, Ji-Na;Kim, Tae-Hun;Choi, Bong-Hwan;Sang, Byung-Chan;Joo, Yeong-Kuk;Park, Jun-Kyu;Lee, Sung-Hoon;Lee, Jeong-Ill;Park, Jeong-Suk;Sin, Young-Soo;Kim, Byung-Woo;Cho, Byung-Wook
    • Journal of Life Science
    • /
    • v.20 no.6
    • /
    • pp.825-830
    • /
    • 2010
  • Two diallelic markers at candidate gene loci, the prolactin receptor 3 (PRLR3) gene and the retinol-binding protein 4 (RBP4) gene were evaluated for their association with growth and litter size traits in Berkshire. Genetic evaluation was conducted for 5,919 pigs with pedigree information, which included 3,480 growth performance records and 775 litter size records of 224 sows. From the same herd, genotyping was carried out on 144 and 156 animals for PRLR3 and RBP4, respectively. After assigning a genotype to subjects in which both parents had a homozygous genotype, numbers of genotyped animals increased to 474 and 338, for the PRLR3 gene and RBP4 gene, respectively. The genotype effects of two markers were estimated with breeding values of the genotyped animals. The additive effects of total number of piglets born and number of piglets born alive in the PRLR3 locus were -0.28 and -0.13, respectively. The dominance effect of the RBP4 locus on average daily gain was -10.58 g. However, the polymorphism of the RBP4 locus in total number of piglets born and number of piglets born alive has shown -0.34 and -0.33 of the additive genetic effects. In view of the results, MAS (marker-assisted selection) favoring B alleles of RBP4 and PRLR3 loci could potentially accelerate the rate of the genetic improvement in the litter size traits.