• 제목/요약/키워드: Candidate Images

검색결과 415건 처리시간 0.031초

뉴스미디어, 캠페인 미디어, 그리고 정치 대화가 후보자 이미지와 정치적 의사결정에 미치는 영향 -제17대 대통령 선거를 중심으로- (The Effects of the News Media, Campaign Media, and Political Talk on Voters' Candidate Images and Political Decision Making -A Study of the 17th Presidential Election in Korea-)

  • 민영
    • 한국언론정보학보
    • /
    • 제44권
    • /
    • pp.108-143
    • /
    • 2008
  • 후보자 이미지는 다양한 차원의 속성들로 구성되는 후보자에 대한 총체적 인상이다. 본 연구는 온 오프라인 뉴스미디어, 정치광고, 텔레비전 토론회, 후보자 웹사이트 등의 캠페인 미디어, 그리고 대인 간 정치 대화가 후보자의 개인적 품성과 직무수행 및 정책능력에 대한 이미지에 어떠한 영향력을 행사하는지를 분석하고, 더 나아가 정치적 의사결정 과정에서 이미지가 담당하는 역할을 탐색했다. 분석은 2007년 12월 실시된 17대 대통령 선거에서 50% 가까운 득표를 통해 당선된 이명박 후보를 중심으로 수행되었다. 주요 분석 결과는 다음과 같다. 첫째, 신문 뉴스 열독은 개인 품성 이미지에 긍정적 효과를 보였으나, 인터넷신문 이용은 직무수행과 정책능력 이미지에 부정적 영향력을 행사했다. 둘째, 캠페인 미디어 중 특히 텔레비전 정치광고와 후보자 웹사이트는 다양한 차원에서 긍정적인 이미지 형성에 매우 높은 효과를 나타냈지만 투표 행위에 대해서는 직접적인 효과를 보이지 않음으로써, 주로 간접적 경로로 정치적 선택에 영향력을 행사했음을 알 수 있었다. 텔레비전 후보 토론회의 경우, 1, 2, 3차 토론회가 각각 상이한 방식으로 이미지 형성과 정치적 행위에 영향을 미친 것으로 관찰되었다. 셋째, 정치 대화의 빈도와 규모는 각각 개인적 품성과 경제정책능력에 대한 평가에 부정적인 효과를 보였으나, 대화 규모는 이명박 투표에 긍정적인 효과를 나타났다. 넷째, 다양한 차원의 후보자 이미지는 투표 행위에 매우 높은 설명력을 보였는데, 특히 이명박 후보의 도덕성, 정직성, 신뢰성, 서민성 등 개인적 품성에 대한 이미지가 그에 대한 투표 행위에 가장 중요한 예측 요인이었던 것으로 나타났다.

  • PDF

Small Target Detecting and Tracking Using Mean Shifter Guided Kalman Filter

  • Ye, Soo-Young;Joo, Jae-Heum;Nam, Ki-Gon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권4호
    • /
    • pp.187-192
    • /
    • 2013
  • Because of the importance of small target detection in infrared images, many studies have been carried out in this area. Using a Kalman filter and mean shift algorithm, this study proposes an algorithm to track multiple small moving targets even in cases of target disappearance and appearance in serial infrared images in an environment with many noises. Difference images, which highlight the background images estimated with a background estimation filter from the original images, have a relatively very bright value, which becomes a candidate target area. Multiple target tracking consists of a Kalman filter section (target position prediction) and candidate target classification section (target selection). The system removes error detection from the detection results of candidate targets in still images and associates targets in serial images. The final target detection locations were revised with the mean shift algorithm to have comparatively low tracking location errors and allow for continuous tracking with standard model updating. In the experiment with actual marine infrared serial images, the proposed system was compared with the Kalman filter method and mean shift algorithm. As a result, the proposed system recorded the lowest tracking location errors and ensured stable tracking with no tracking location diffusion.

REVERSIBLE INFORMATION HIDING FOR BINARY IMAGES BASED ON SELECTING COMPRESSIVE PIXELS ON NOISY BLOCKS

  • Niimi, Michiharu;Noda, Hideki
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.588-591
    • /
    • 2009
  • This paper proposes a reversible information hiding method for binary images. A half of pixels in noisy blocks on cover images is candidate for embeddable pixels. Among the candidate pixels, we select compressive pixels by bit patterns of its neighborhood to compress the pixels effectively. Thus, embeddable pixels in the proposed method are compressive pixels in noisy blocks. We provide experimental results using several binary images binarized by the different methods.

  • PDF

Edge Detection using Enhanced Cost Minimization Methods

  • Seong-Hoon Lee
    • International journal of advanced smart convergence
    • /
    • 제13권2호
    • /
    • pp.88-93
    • /
    • 2024
  • The main problem with existing edge detection techniques is that they have many limitations in detecting edges for complex and diverse images that exist in the real world. This is because only edges of a defined shape are discovered based on an accurate definition of the edge. One of the methods to solve this problem is the cost minimization method. In the cost minimization method, cost elements and cost functions are defined and used. The cost function calculates the cost for the candidate edge model generated according to the candidate edge generation strategy, and if the cost is found to be satisfactory, the candidate edge model becomes the edge for the image. In this study, we proposed an enhanced candidate edge generation strategy to discover edges for more diverse types of images in order to improve the shortcoming of the cost minimization method, which is that it only discovers edges of a defined type. As a result, improved edge detection results were confirmed.

A Method for Identification of Harmful Video Images Using a 2-Dimensional Projection Map

  • Kim, Chang-Geun;Kim, Soung-Gyun;Kim, Hyun-Ju
    • Journal of information and communication convergence engineering
    • /
    • 제11권1호
    • /
    • pp.62-68
    • /
    • 2013
  • This paper proposes a method for identification of harmful video images based on the degree of harmfulness in the video content. To extract harmful candidate frames from the video effectively, we used a video color extraction method applying a projection map. The procedure for identifying the harmful video has five steps, first, extract the I-frames from the video and map them onto projection map. Next, calculate the similarity and select the potentially harmful, then identify the harmful images by comparing the similarity measurement value. The method estimates similarity between the extracted frames and normative images using the critical value of the projection map. Based on our experimental test, we propose how the harmful candidate frames are extracted and compared with normative images. The various experimental data proved that the image identification method based on the 2-dimensional projection map is superior to using the color histogram technique in harmful image detection performance.

컬러공간 특성을 이용한 유해 동영상 식별방법에 관한 연구 (An Identification Method of Detrimental Video Images Using Color Space Features)

  • 김성균;김창근;정대율
    • 한국산학기술학회논문지
    • /
    • 제12권6호
    • /
    • pp.2807-2814
    • /
    • 2011
  • 본 논문은 컬러공간 특성을 이용하여 유해동영상을 식별하는 알고리즘을 개발하고, 실험을 통하여 알고리즘의 효율성을 검증한다. 유해동영상 식별 알고리즘은 2차원 투영맵에 기초하고 있다. 비디오 이미지의 컬러특성을 추출하는데 있어 2차원 투영맵은 후보 프레임을 효과적으로 추출하는데 적용되어진다. 본 연구에서는 제시된 유사도 계산 알고리즘을 이용하여 추출된 프레임과 기준 이미지 간의 유사도를 먼저 계산하고, 유사도 평가를 통하여 유해동영상 후보프레임을 식별해 내고 임계치를 적용하여 최종 판단을 내린다. 제시된 알고리즘을 적용한 실험결과, 유해동영상을 찾는데 있어 컬러히스토그램보다 본 연구에서 제안한 2차원 투영맵을 이용한 기법이 계산속도와 식별능력 면에서 더 우수함을 입증하였다.

하이퍼스펙트럴 영상 인식을 통한 종양 검출 (Hyperspectral Image Recognition for Tumor Detection)

  • 김한열;김인택
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅲ
    • /
    • pp.1545-1548
    • /
    • 2003
  • This paper presents a method for detecting skin tumors on chicken carcasses using hyperspectral images. It utilizes both fluorescence and reflectance image information in hyperspectral images. A detection system that is built on this concept can increase detection rate and reduce processing time. Chicken carcasses are examined first using band ratio FCM information of fluorescence image and it results in candidate regions for skin tumor. Next classifier selects the real tumor spots using PCA components information of reflectance image from the candidate regions.

  • PDF

AN EFFICIENT IMAGE SEGMENTATION TECHNIQUE TO IDENTIFY TARGET AREAS FROM LARGE-SIZED MONOCHROME IMAGES

  • Yoon Young-Geun;Lee Seok-Lyong;park Ho-Hyun;Chung Chin-Wan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.571-574
    • /
    • 2005
  • In this paper, we propose an efficient image segmentation technique for large-sized monochrome images using a hybrid approach which combines threshold and region-based techniques. First, an image is partitioned into fixed-size blocks and for each block the representative intensity is determined by averaging pixel intensities within the block. Next, the neighborhood blocks that have similar characteristics with respect to a specific threshold are merged in order to form candidate regions. Finally, those candidate regions are refined to get final target object regions by merging regions considering the spatial locality and certain criteria. We have performed experiments on images selected from various domains and showed that our technique was able to extract target object regions appropriately from most images.

  • PDF

정맥패턴 융합을 위한 Boundary Stitching Algorithm (Boundary Stitching Algorithm for Fusion of Vein Pattern)

  • 임영규;장경식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 춘계학술발표대회
    • /
    • pp.521-524
    • /
    • 2005
  • This paper proposes a fusion algorithm which merges multiple vein pattern images into a single image, larger than those images. As a preprocessing step of template matching, during the verification of biometric data such as fingerprint image, vein pattern image of hand, etc., the fusion technique is used to make reference image larger than the candidate images in order to enhance the matching performance. In this paper, a new algorithm, called BSA (Boundary Stitching Algorithm) is proposed, in which the boundary rectilinear parts extracted from the candidate images are stitched to the reference image in order to enlarge its matching space. By applying BSA to practical vein pattern verification system, its verification rate was increased by about 10%.

  • PDF

Text Detection in Scene Images Based on Interest Points

  • Nguyen, Minh Hieu;Lee, Gueesang
    • Journal of Information Processing Systems
    • /
    • 제11권4호
    • /
    • pp.528-537
    • /
    • 2015
  • Text in images is one of the most important cues for understanding a scene. In this paper, we propose a novel approach based on interest points to localize text in natural scene images. The main ideas of this approach are as follows: first we used interest point detection techniques, which extract the corner points of characters and center points of edge connected components, to select candidate regions. Second, these candidate regions were verified by using tensor voting, which is capable of extracting perceptual structures from noisy data. Finally, area, orientation, and aspect ratio were used to filter out non-text regions. The proposed method was tested on the ICDAR 2003 dataset and images of wine labels. The experiment results show the validity of this approach.