• Title/Summary/Keyword: Candida lusitaniae

Search Result 18, Processing Time 0.022 seconds

Detection of Antifungal Activities from Pomegranate (석류에서 항진균성 활성의 탐색)

  • Lee, Geum Young;Park, Tae Hee;Lee, Da-In;Park, Jeong-Ro;Choi, Sang Ki
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.2
    • /
    • pp.287-290
    • /
    • 2015
  • Antifungal activities of pomegranate were investigated. Seventy percent ethanol extracts of seeds, peels, and whole fruits of pomegranate showed similar antifungal activities against Candida albicans in liquid media, whereas extract of whole fruit showed relatively high antifungal activity in solid media. When 70% ethanol extracts were fractionated sequentially with chloroform and ethyl acetate, ethyl acetate fraction exhibited the highest anti-fungal activities against C. albicans. Ethyl acetate fractions of whole fruits and peel portions showed at least 36% and 25% growth against C. albicans, Candida glabrata, Candida tropicalis, and Candida lusitaniae in liquid media, respectively. These results indicate that pomegranate contains antifungal compounds soluble with organic solvents.

A Case of Infantile Fungal Urinary Tract Infection

  • Cho, Wonhee;Jo, Young Min;Oh, Yun Kyo;Rim, Ji Woo;Lee, Won Uk;Choi, Kyongeun;Ko, Jeong Hee;Jeon, Yeon Jin;Choi, Yumi
    • Childhood Kidney Diseases
    • /
    • v.23 no.2
    • /
    • pp.121-123
    • /
    • 2019
  • Urinary tract infection is common in the pediatric population. The most common causative agents are bacteria, among which Escherichia coli is the most frequent uropathogen. Although fungal urinary tract infection is rare in the healthy pediatric population, it is relatively common among hospitalized patients. Fungus may be isolated from the urine of immunocompromised patients or that of patients with indwelling catheters. The most common cause of funguria is Candida albicans. Although more than 50% of Candida isolates belong to non-albicans Candida, the prevalence of non-albicans candiduria is increasing. Herein, we report a case of community-acquired candiduria in a 4-month-old immunocompetent male infant who had bilateral vesicoureteral reflux and was administered antibiotic prophylaxis. He was diagnosed with urinary tract infection caused by Candida lusitaniae and was managed with fluconazole.

Identification of Uncommon Candida Species Using Commercial Identification Systems

  • Kim, Tae-Hyoung;Kweon, Oh Joo;Kim, Hye Ryoun;Lee, Mi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2206-2213
    • /
    • 2016
  • Recently, several studies have revealed that commercial microbial identification systems do not accurately identify the uncommon causative species of candidiasis, including Candida famata, Meyerozyma guilliermondii, and C. auris. We investigated the accuracy of species-level identification in a collection of clinical isolates previously identified as C. famata (N = 38), C. lusitaniae (N = 1 2), and M. guilliermondii (N = 5) by the Vitek 2 system. All 55 isolates were re-analyzed by the Phoenix system (Becton Dickinson Diagnostics), two matrix-assisted laser desorption ionization-time of flight mass spectrometry analyzers (a Vitek MS and a Bruker Biotyper), and by sequencing of internal transcribed spacer (ITS) regions or 26S rRNA gene D1/D2 domains. Among 38 isolates previously identified as C. famata by the Vitek 2 system, the majority (27/38 isolates, 71.1%) were identified as C. tropicalis (20 isolates) or C. albicans (7 isolates) by ITS sequencing, and none was identified as C. famata. Among 20 isolates that were identified as C. tropicalis, 17 (85%) were isolated from urine. The two isolates that were identified as C. auris by ITS sequencing originated from ear discharge. The Phoenix system did not accurately identify C. lusitaniae, C. krusei, or C. auris. The correct identification rate for 55 isolates was 92.7% (51/55 isolates) for the Vitek MS and 94.6% (52/55 isolates) for the Bruker Biotyper, as compared with results from ITS sequencing. These results suggest that C. famata is very rare in Korea, and that the possibility of misidentification should be noted when an uncommon Candida species is identified.

Comparison of Ethanol Yield Coefficients Using Saccharomyces cerevisiae, Candida lusitaniae, and Kluyveromyces marxianus Adapted to High Concentrations of Galactose with Gracilaria verrucosa as Substrate

  • Park, Yurim;Sunwoo, In Yung;Yang, Jiwon;Jeong, Gwi-Teak;Kim, Sung-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.930-936
    • /
    • 2020
  • The red seaweed Gracilaria verrucosa has been used for the production of bioethanol. Pretreatment for monosaccharide production was carried out with 12% (w/v) G. verrucosa slurry and 500 mM HNO3 at 121℃ for 90 min. Enzymatic hydrolysis was performed with a mixture of commercial enzymes (Cellic C-Tec 2 and Celluclast 1.5 L; 16 U/ml) at 50℃ and 150 rpm for 48 h. G. verrucosa was composed of 66.9% carbohydrates. In this study, 61.0 g/L monosaccharides were obtained from 120.0 g dw/l G. verrucosa. The fermentation inhibitors such as hydroxymethylfurfural (HMF), levulinic acid, and formic acid were produced during pretreatment. Activated carbon was used to remove HMF. Wild-type and adaptively evolved Saccharomyces cerevisiae, Candida lusitaniae, and Kluyveromyces marxianus were used for fermentation to evaluate ethanol production.

Distribution and Antifungal Susceptibilities of Candida Species Isolated from Blood Cultures from 2016 to 2023 years

  • Seung Bok Hong
    • Biomedical Science Letters
    • /
    • v.30 no.2
    • /
    • pp.73-80
    • /
    • 2024
  • The aim of this study was to investigate the distribution and antifungal susceptibilities of Candida spp. from blood culture to provide useful information on empirical treatment of Candidemia. We investigated distribution and antifungal susceptibilities of Candida spp. isolated from blood culture during an 8-years (2016-2023) in a C-University hospital. Over 8 years, 1,182 Candida strains from blood culture were isolated, which was fourth most common cause of bloodstream infection. Among nonduplicated 350 Candida strains, C. albicans was the most common with 45.43%, followed by C. glabrata (17.43%), C. tropicalis (17.43%), C. parapsilosis (14.86%), C. guilliermondii (1.71%), C. krusei (0.86%), C. lusitaniae (0.86%), C. ciferrii (0.57%). In the antifungal susceptibility testing on 323 Candida strains, the non-susceptibility rate was 2.48% for amphotericin B, 1,71% for flucytosine, 3.09% for fluconazole, 4.66% for voriconazole, 5.57% for caspofungin, and 0.62% for micafungin. In particular, C. albicans showed non-susceptibility of 8.23% to voriconazole, and C. glabrata showed 14.81% and 24.59% to fluconazole and caspofungin, respectively. These data showed that the prevalence of candidemia is very common, and antifungal resistance in Candida spp., especially C. glabrata, is increasing. Therefore, periodic surveillance of prevalence and antifungal susceptibility of blood culture is very important for clinical laboratory.

Evaluation of Galactose Adapted Yeasts for Bioethanol Fermentation from Kappaphycus alvarezii Hydrolyzates

  • Nguyen, Trung Hau;Ra, Chae Hun;Sunwoo, In Yung;Jeong, Gwi-Taek;Kim, Sung-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1259-1266
    • /
    • 2016
  • Bioethanol was produced from Kappaphycus alvarezii seaweed biomass using separate hydrolysis and fermentation (SHF). Pretreatment was evaluated for 60 min at 121℃ using 12% (w/v) biomass slurry with 364 mM H2SO4. Enzymatic saccharification was then carried out at 45℃ for 48 h using Celluclast 1.5 L. Ethanol fermentation with 12% (w/v) K. alvarezii hydrolyzate was performed using the yeasts Saccharomyces cerevisiae KCTC1126, Kluyveromyces marxianus KCTC7150, and Candida lusitaniae ATCC42720 with or without prior adaptation to high concentrations of galactose. When non-adapted S. cerevisiae, K. marxianus, and C. lusitaniae were used, 11.5 g/l, 6.7 g/l, and 6.0 g/l of ethanol were produced, respectively. When adapted S. cerevisiae, K. marxianus, and C. lusitaniae were used, 15.8 g/l, 11.6 g/l, and 13.4 g/l of ethanol were obtained, respectively. The highest ethanol concentration was 15.8 g/l, with YEtOH = 0.43 and YT% = 84.3%, which was obtained using adapted S. cerevisiae.

A Study on the Antifungal Properties of Ranunculaceae Herbal Medicines (미나리아재비과 한약재의 항진균성 검증 및 비교 연구)

  • Jae-yeoup Lim;Sang Ki Choi
    • Journal of Life Science
    • /
    • v.34 no.6
    • /
    • pp.393-398
    • /
    • 2024
  • The purpose of this study was to verify the antifungal properties of various herbal medicines belonging to the Ranunculaceae family and to find an extraction method effective in inhibiting fungal growth. When antifungal activity was measured in a liquid medium with extracts obtained by either hot water extraction or organic solvent extraction of the herbal medicines Clematis apiifolia, Coptis chinensis, and Pusatilla chinensis, effective results were obtained from the chloroform extract. In addition, fungal growth inhibition experiments were performed on unicellular fungi, Candida albicans, Candida tropicalis, and Candida lusitaniae, and on filamentous fungi, such as Pythium ultimum, Aspergillus fumigatus, and Fusarium oxysporum, using disk diffusion experiments on solid media. It was confirmed that P. chinensis extract has excellent antifungal properties against Candida spp. and C. apiifolia extract against filamentous mold. Finally, GC-MS analysis was performed to explore the useful antifungal substances present in the extract. As a result of the study, thurbergenone from C. apiifolia and 16-hydroxycleroda-3, 13(14)-dien-15, 16-olide (16-HCDO) from C. chinensis were confirmed as antifungal candidates. In conclusion, it was confirmed that C. apiifolia, C. chinensis, and P. chinensis have antifungal activity against various fungi, and in GC-MS analysis, all herbal medicines were confirmed to have different antifungal candidates. These results indicate that the Ranunculaceae family has evolved in several directions for fungal resistance traits.

7-Oxostaurosporine Selectively Inhibits the Mycelial Form of Candida albicans

  • Hwang, Eui-Il;Yun, Bong-Sik;Lee, Sang-Han;Kim, Soo-Kie;Lim, Se-Jin;Kim, Sung-Uk
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.1067-1070
    • /
    • 2004
  • In the course of screening for specific inhibitors against the mycelial form of Candida albicans from natural resources, we have isolated and identified A6792-1 from Streptomyces sp. A6792 by using several chromatographies. By spectral analyses, this compound was determined as 7-oxostaurosporine, having a structure of staurosporine aglycon noiety. 7-Oxostaurosporine exhibited a selective growth inhibitory activity against the mycelial form of Candida spp. up to $100\mu\textrm{g}/disc$ in bioassay. It also exhibited a specific antifungal activity against the mycelial form of Candida spp. including C. krusei, C. albicans, C. tropicalis, and C. lusitaniae with MICs ranging from 3.1 to $25\mu\textrm{g}/ml$ 7-Oxostaurosporine demonstrated no in vivo toxicity in SPF ICR mice. Therefore, this compound may have a considerable potential as an antifungal agent based on the preferential inhibition against growth of the mycelial form of Candida spp., dimorphic fungi.

Thermal Acid Hydrolysis Pretreatment, Enzymatic Saccharification and Ethanol Fermentation from Red Seaweed, Gracilaria verrucosa (꼬시래기 홍조류로부터 열산가수분해, 효소당화 및 에탄올 발효)

  • Ra, Chae Hun;Choi, Jin Gyu;Kang, Chang-Han;Sunwoo, In Yung;Jeong, Gwi-Taek;Kim, Sung-Koo
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • The seaweed, Gracilaria verrucosa, was fermented to produce bioethanol. Optimal pretreatment conditions were determined to be 12% (w/v) seaweed slurry and 270 mM sulfuric acid at 121℃ for 60 min. After thermal acid hydrolysis, enzymatic saccharification was carried out with 16 U/ml of mixed enzymes using Viscozyme L and Celluclast 1.5 L to G. verrucosa hydrolysates. A total monosaccharide concentration of 50.4 g/l, representing 84.2% conversion of 60 g/l total carbohydrate from 120 g dw/l G. verrucosa slurry was obtained by thermal acid hydrolysis and enzymatic saccharification. G. verrucosa hydrolysate was used as the substrate for ethanol production by separate hydrolysis and fermentation (SHF). Ethanol production by Candida lusitaniae ATCC 42720 acclimated to high-galactose concentrations was 22.0 g/l with ethanol yield (YEtOH) of 0.43. Acclimated yeast to high concentrations of specific sugar could utilize mixed sugars, resulting in higher ethanol yields in the seaweed hydrolysates medium.

Translation Inhibition Activity and Antifungal Activity of Korean Propolis (프로폴리스의 단백질합성저해활성 및 항진균활성)

  • Goh, Ah-Ra;Choi, Kap-Seong;Choi, Sang-Ki
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.1
    • /
    • pp.64-69
    • /
    • 2010
  • It has been known that propolis possesses anti-infective, anti-inflammatory, and anti-oxidative properties. Although antifungal activity of Propolis has already been demonstrated, very few studies has been conducted for action mechanism and its spectrum on fungi. We found that ethanol extract of propolis (EEP) inhibited in vitro translation. Since we also observed the growth inhibition of pathogenic fungi and anti-oxidative properties preliminarily, we try to see where those properties come from. Therefore we extracted the EEP further with chloroform, ethyl acetate and butanol. When their fractions were examined for the growth inhibition of Candida albicans, Saccharomyces cerevisiae, Candida glabrata, Candida lusitaniae, Cryptococcos neoformans, chloroform fraction exhibited the highest anti-fungal as well as anti-oxidative properties. Similarly the chloroform fraction showed highest translation-inhibiting activities among the various Propolis fractions. These data indicate that those properties might come from similar compounds.