Browse > Article
http://dx.doi.org/10.4014/jmb.1602.02019

Evaluation of Galactose Adapted Yeasts for Bioethanol Fermentation from Kappaphycus alvarezii Hydrolyzates  

Nguyen, Trung Hau (Department of Biotechnology, Pukyong National University)
Ra, Chae Hun (Department of Biotechnology, Pukyong National University)
Sunwoo, In Yung (Department of Biotechnology, Pukyong National University)
Jeong, Gwi-Taek (Department of Biotechnology, Pukyong National University)
Kim, Sung-Koo (Department of Biotechnology, Pukyong National University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.7, 2016 , pp. 1259-1266 More about this Journal
Abstract
Bioethanol was produced from Kappaphycus alvarezii seaweed biomass using separate hydrolysis and fermentation (SHF). Pretreatment was evaluated for 60 min at 121℃ using 12% (w/v) biomass slurry with 364 mM H2SO4. Enzymatic saccharification was then carried out at 45℃ for 48 h using Celluclast 1.5 L. Ethanol fermentation with 12% (w/v) K. alvarezii hydrolyzate was performed using the yeasts Saccharomyces cerevisiae KCTC1126, Kluyveromyces marxianus KCTC7150, and Candida lusitaniae ATCC42720 with or without prior adaptation to high concentrations of galactose. When non-adapted S. cerevisiae, K. marxianus, and C. lusitaniae were used, 11.5 g/l, 6.7 g/l, and 6.0 g/l of ethanol were produced, respectively. When adapted S. cerevisiae, K. marxianus, and C. lusitaniae were used, 15.8 g/l, 11.6 g/l, and 13.4 g/l of ethanol were obtained, respectively. The highest ethanol concentration was 15.8 g/l, with YEtOH = 0.43 and YT% = 84.3%, which was obtained using adapted S. cerevisiae.
Keywords
Kappaphycus alvarezii; thermal acid hydrolysis pretreatment; enzymatic saccharification; fermentation; adaptation;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 AOAC (Association of Official Analytical Chemists). 1995. In Cunniff P (ed.). Official Methods of Analysis of the Association of Official Analytical Chemists, 16th Ed. Association of Official Analytical Chemists, Arlington, VA.
2 Andrietta MGS, Andrietta SR, Steckelberg C, Stupiello ENA. 2007. Bioethanol - 30 years of Proálcool. Int. Sugar J. 109: 195-200.
3 Bro C, Knudsen S, Regenberg B, Olsson L, Nielsen J. 2005. Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphogluconutase: example of transcript analysis as a tool in inverse metabolic engineering. Appl. Environ. Microbiol. 71: 6465-6472.   DOI
4 Cho HY, Ra CH, Kim SK. 2014. Ethanol production from the seaweed Gelidium amansii, using specific sugar acclimated yeast. J. Microbiol. Biotechnol. 24: 264-269.   DOI
5 Cho YK, Kim HJ, Kim SK. 2013. Bioethanol production from brown seaweed, Undaria pinnatifida, using N aCl acclimated yeast. Bioprocess Biosyst. Eng. 36: 713-719.   DOI
6 Freer SN, Detroy RW. 1983. Characterization of cellobiose fermentations to ethanol by yeasts. Biotechnol. Bioeng. 25: 541-557.   DOI
7 Ge L, Wang P, Mou H. 2011. Study on saccharification techniques of seaweed waste for transformation of ethanol. Renew. Energy 36: 84-89.   DOI
8 Goh CS, Lee KT. 2010. A visionary and conceptual macroalgae-based renewable and sustainable development. Renew. Sustain. Energy Rev. 14: 842-848.   DOI
9 Hargreaves PI, Barcelos CA, da Costa AC, Pereira N Jr. 2013. Production of ethanol 3G from Kappaphycus alvarezii: evaluation of different process strategies. Bioresour. Technol. 134: 257-263.   DOI
10 Hsu CL, Chang KS, Lai MZ, Chang TC, Chang YH, Jang HD. 2011. Pretreatment and hydrolysis of cellulosic agricultural wastes with a cellulose-producing Streptomyces for bioethanol production. Biomass Bioenergy 32: 1878-1884.   DOI
11 Jol CN, Neiss TG, Penninkhof B, Rudolph B, De Ruiter GA. 1999. A novel high-performance anion-exchange chromatographic method for the analysis of carrageenans and agars containing 3,6-anhydrogalactose. Anal. Biochem. 268: 213-222.   DOI
12 Jeong GT, Ra CH, Hong YK, Kim JK, Kong IS, Kim SK, Park DH. 2015. Conversion of red-alage Gracilaria verrucosa to sugars, levulinic acid and 5-hydroxymethylfurfural. Bioprocess Biosyst. Eng. 38: 207-217.   DOI
13 Kubicek CP. 1982. β-Glucanase excretion by Trichoderma pseudokoningii: correlation with cell wall bound β-1,3-glucanase activities. Arch. Microbiol. 132: 349-354.   DOI
14 Limayem A, Ricke SC. 2012. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog. Energy Combust. Sci. 38: 449-467.   DOI
15 Mandels M, Andreotti R, Roche C. 1976. Measurement of saccharifying cellulose. Biotechnol. Bioeng. Symp. 6: 21-23.
16 McHugh DC. 2003. A guide to seaweed industry. FAO Fisheries Technical Paper No. 441. FAO, Rome, Italy.
17 Meinita MDN, Kang JY, Jeong GT, Koo HM, Park SM, Hong YK. 2011. Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezzi (cottonii). J. Appl. Phycol. 24: 857-862.   DOI
18 Puspawati S, Wagiman, Ainuri M, Nugraha DA, Haslianti. 2015. The production of bioethanol fermentation substrate from Eucheuma cottonii seaweed through hydrolysis by cellulose enzyme. Agric. Agric. Sci. Procedia 3: 200-205.   DOI
19 Nonklang S, Abdel-Banat BM, Cha-aim K, Moonjai N, Hoshida H, Limtong S, et al. 2008. High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Appl. Environ. Microbiol. 74: 7514-7521   DOI
20 Park JH, Hong JY, Jang HC, Oh SG, Kim SH, Yoon JJ, Kim YJ. 2012. Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour. Technol. 108: 83-88.   DOI
21 Ra CH, Jeong GT, Shin MK, Kim SK. 2013. Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii. Bioresour. Technol. 140: 421-425.   DOI
22 Ra CH, Choi JG, Kang CH, Sunwoo IY, Jeong KT, Kim SK. 2015. Thermal acid hydrolysis pretreatment, enzymatic saccharification and ethanol fermentation from red seaweed, Gracilaria verrucosa. Microbiol. Biotechnol. Lett. 43: 9-15.   DOI
23 Redding AP, Wang Z, Keshwani DR, Cheng J. 2010. High temperature diluted acid pretreatment of coastal Bermuda grass for enzymatic hydrolysis. Bioresour. Technol. 102: 1415-1424.   DOI
24 Shuler ML, Kargi K. 2001. Bioprocess Engineering: Basic Concepts, pp. 160, 215. 2nd Ed. Prentice Hall PTR, Upper Saddle River, NJ.
25 Spindler DD, Wyman CE, Mohagheghi A, Grohmann K. 1988. Thermotolerant yeast for simultaneous saccharification and fermentation of cellulose to ethanol. Appl. Biochem. Biotechnol. 17: 279-293.   DOI
26 Yanagisawa M, Kawai S, Murata K. 2013. Strategies for the production of high concentrations of bioethanol from seaweeds. Bioengineered 4: 224-235.   DOI
27 Wu CH, Chien WC, Chou HK, Yang J, Lin VHT. 2014. Sulfuric acid hydrolysis and detoxification of red alga Pterocladiella capillacea for bioethanol fermentation with thermotolerant yeast Kluyveromyces marxianus. J. Microbiol. Biotechnol. 24: 1245-1253.   DOI