• Title/Summary/Keyword: Cancer therapeutics

Search Result 547, Processing Time 0.028 seconds

Evaluation of the Immunohistochemical Staining Pattern of the mTOR Signaling Proteins in Colorectal Cancers and Adenoma Lesions (대장암과 선종 병변에서 mTOR 신호 단백질의 면역조직화학 염색성 평가)

  • Kim, Jin Mok;Lee, Hyoun Wook
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.4
    • /
    • pp.470-476
    • /
    • 2017
  • Changes in the mammalian target of the rapamycin (mTOR) signaling proteins have been observed in many types of cancer. Accordingly, these proteins have recently become an exciting new target for molecular therapeutics. This study examined the expression of an activated mTOR signaling protein in patients with colorectal adenocarcinoma (CRAC) and colorectal adenoma lesion. Immunohistochemical analysis was performed on human CRAC and adenoma for the mTOR signaling components, including mTOR, phosphorylation, and activation of S6 kinase (p70-S6K), S6 ribosomal protein (S6), and eukaryotic initiation factor 4E-binding protein (4EBP1). A total of 100 cases with colorectal adenocarcinoma (CARC; N=40), adenoma with high-grade intraepithelial neoplasms (HIN; N=30), and adenoma with low-grade intraepithelial neoplasms (LIN; N=30) were enrolled in this study. p-mTOR expression was observed in 30 cases of the CRAC tissues (75%), 9 cases of adenoma with HIN (30%), and 2 cases of adenoma with LIN (7%). In addition, p-S6 expression was observed in 22 cases of CRAC tissues (55%), 8 cases of adenoma with HIN (27%), and 3 cases of adenoma with LIN (10%). A significant correlation was observed among the p-mTOR, p-S6 expression, and the adenoma-carcinoma sequence. Interestingly, the p-S6 protein was activated more in early CRAC than in advanced CRAC.

β-lapachone-Induced Apoptosis of Human Gastric Carcinoma AGS Cells Is Caspase-Dependent and Regulated by the PI3K/Akt Pathway

  • Yu, Hai Yang;Kim, Sung Ok;Jin, Cheng-Yun;Kim, Gi-Young;Kim, Wun-Jae;Yoo, Young Hyun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.22 no.3
    • /
    • pp.184-192
    • /
    • 2014
  • ${\beta}$-lapachone is a naturally occurring quinone that selectively induces apoptotic cell death in a variety of human cancer cells in vitro and in vivo; however, its mechanism of action needs to be further elaborated. In this study, we investigated the effects of ${\beta}$-lapachone on the induction of apoptosis in human gastric carcinoma AGS cells. ${\beta}$-lapachone significantly inhibited cellular proliferation, and some typical apoptotic characteristics such as chromatin condensation and an increase in the population of sub-G1 hypodiploid cells were observed in ${\beta}$-lapachone-treated AGS cells. Treatment with ${\beta}$-lapachone caused mitochondrial transmembrane potential dissipation, stimulated the mitochondria-mediated intrinsic apoptotic pathway, as indicated by caspase-9 activation, cytochrome c release, Bcl-2 downregulation and Bax upregulation, as well as death receptor-mediated extrinsic apoptotic pathway, as indicated by activation of caspase-8 and truncation of Bid. This process was accompanied by activation of caspase-3 and concomitant with cleavage of poly(ADP-ribose) polymerase. The general caspase inhibitor, z-VAD-fmk, significantly abolished ${\beta}$-lapachone-induced cell death and inhibited growth. Further analysis demonstrated that the induction of apoptosis by ${\beta}$-lapachone was accompanied by inactivation of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. The PI3K inhibitor LY29004 significantly increased ${\beta}$-lapachone-induced apoptosis and growth inhibition. Taken together, these findings indicate that the apoptotic activity of ${\beta}$-lapachone is probably regulated by a caspase-dependent cascade through activation of both intrinsic and extrinsic signaling pathways, and that inhibition of the PI3K/Akt signaling may contribute to ${\beta}$-lapachone-mediated AGS cell growth inhibition and apoptosis induction.

Baicalein Inhibits the Migration and Invasion of B16F10 Mouse Melanoma Cells through Inactivation of the PI3K/Akt Signaling Pathway

  • Choi, Eun-Ok;Cho, Eun-Ju;Jeong, Jin-Woo;Park, Cheol;Hong, Su-Hyun;Hwang, Hye-Jin;Moon, Sung-Kwon;Son, Chang Gue;Kim, Wun-Jae;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.213-221
    • /
    • 2017
  • Baicalein, a natural flavonoid obtained from the rhizome of Scutellaria baicalensis Georgi, has been reported to have anticancer activities in several human cancer cell lines. However, its antimetastatic effects and associated mechanisms in melanoma cells have not been extensively studied. The current study examined the effects of baicalein on cell motility and anti-invasive activity using mouse melanoma B16F10 cells. Within the noncytotoxic concentration range, baicalein significantly inhibited the cell motility and invasiveness of B16F10 cells in a concentration-dependent manner. Baicalein also reduced the activity and expression of matrix metalloproteinase (MMP)-2 and -9; however, the levels of tissue inhibitor of metalloproteinase-1 and -2 were concomitantly increased. The inhibitory effects of baicalein on cell motility and invasiveness were found to be associated with its tightening of tight junction (TJ), which was demonstrated by an increase in transepithelial electrical resistance and downregulation of the claudin family of proteins. Additionally, treatment with baicalein markedly reduced the expression levels of lipopolysaccharide-induced phosphorylated Akt and the invasive activity in B16F10 cells. Taken together, these results suggest that baicalein inhibits B16F10 melanoma cell migration and invasion by reducing the expression of MMPs and tightening TJ through the suppression of claudin expression, possibly in association with a suppression of the phosphoinositide 3-kinase/Akt signaling pathway.

Predictive Factors for Improvement of Atrophic Gastritis and Intestinal Metaplasia: A Long-term Prospective Clinical Study (위축성 위염과 장상피화생의 호전에 영향을 미치는 인자에 대한 전향적 연구)

  • Hwang, Young-Jae;Kim, Nayoung;Yun, Chang Yong;Kwon, Min Gu;Baek, Sung Min;Kwon, Yeong Jae;Lee, Hye Seung;Lee, Jae Bong;Choi, Yoon Jin;Yoon, Hyuk;Shin, Cheol Min;Park, Young Soo;Lee, Dong Ho
    • The Korean journal of helicobacter and upper gastrointestinal research
    • /
    • v.18 no.3
    • /
    • pp.186-197
    • /
    • 2018
  • Background/Aims: To investigate the predictive factors for improvement of atrophic gastritis (AG) and intestinal metaplasia (IM). Materials and Methods: A total of 778 subjects were prospectively enrolled and followed up for 10 years. Histological analysis of AG and IM was performed by using the updated Sydney system. To find the predictive factors for reversibility of AG and IM, 24 factors including genetic polymorphisms and bacterial and environmental factors were analyzed. Results: In all subjects, the predictive factor by multivariate analysis for improvement of both antral and corpus AG was successful eradication. The predictive factors for improvement of antral IM were age and successful eradication. The predictive factor for improvement of corpus IM was successful eradication. In patients with Helicobacter pylori infection, age and cagA were predictive factors for improvement of AG and IM. In patients with H. pylori eradication, monthly income and cagA were predictive factors for improvement of AG and IM. Conclusions: H. pylori eradication is an important predictive factor of regression of AG and IM and would be beneficial for the prevention of intestinal-type gastric cancer. Young age, high income, and cagA are additional predictive factors for improving AG and IM status. Thus, various factors affect the improvement of AG and IM.

A Novel Anti-PD-L1 Antibody Exhibits Antitumor Effects on Multiple Myeloma in Murine Models via Antibody-Dependent Cellular Cytotoxicity

  • Ahn, Jae-Hee;Lee, Byung-Hyun;Kim, Seong-Eun;Kwon, Bo-Eun;Jeong, Hyunjin;Choi, Jong Rip;Kim, Min Jung;Park, Yong;Kim, Byung Soo;Kim, Dae Hee;Ko, Hyun-Jeong
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.166-174
    • /
    • 2021
  • Multiple myeloma is a malignant cancer of plasma cells. Despite recent progress with immunomodulatory drugs and proteasome inhibitors, it remains an incurable disease that requires other strategies to overcome its recurrence and non-response. Based on the high expression levels of programmed death-ligand 1 (PD-L1) in human multiple myeloma isolated from bone marrow and the murine myeloma cell lines, NS-1 and MOPC-315, we propose PD-L1 molecule as a target of anti-multiple myeloma therapy. We developed a novel anti-PD-L1 antibody containing a murine immunoglobulin G subclass 2a (IgG2a) fragment crystallizable (Fc) domain that can induce antibody-dependent cellular cytotoxicity. The newly developed anti-PD-L1 antibody showed significant antitumor effects against multiple myeloma in mice subcutaneously, intraperitoneally, or intravenously inoculated with NS-1 and MOPC-315 cells. The anti-PD-L1 effects on multiple myeloma may be related to a decrease in the immunosuppressive myeloid-derived suppressor cells (MDSCs), but there were no changes in the splenic MDSCs after combined treatment with lenalidomide and the anti-PD-L1 antibody. Interestingly, the newly developed anti-PD-L1 antibody can induce antibody-dependent cellular cytotoxicity in the myeloma cells, which differs from the existing anti-PD-L1 antibodies. Collectively, we have developed a new anti-PD-L1 antibody that binds to mouse and human PD-L1 and demonstrated the antitumor effects of the antibody in several syngeneic murine myeloma models. Thus, PD-L1 is a promising target to treat multiple myeloma, and the novel anti-PD-L1 antibody may be an effective anti-myeloma drug via antibody-dependent cellular cytotoxicity effects.

Bioactive Lipids and Their Derivatives in Biomedical Applications

  • Park, Jinwon;Choi, Jaehyun;Kim, Dae-Duk;Lee, Seunghee;Lee, Bongjin;Lee, Yunhee;Kim, Sanghee;Kwon, Sungwon;Noh, Minsoo;Lee, Mi-Ock;Le, Quoc-Viet;Oh, Yu-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.29 no.5
    • /
    • pp.465-482
    • /
    • 2021
  • Lipids, which along with carbohydrates and proteins are among the most important nutrients for the living organism, have a variety of biological functions that can be applied widely in biomedicine. A fatty acid, the most fundamental biological lipid, may be classified by length of its aliphatic chain, and the short-, medium-, and long-chain fatty acids and each have distinct biological activities with therapeutic relevance. For example, short-chain fatty acids have immune regulatory activities and could be useful against autoimmune disease; medium-chain fatty acids generate ketogenic metabolites and may be used to control seizure; and some metabolites oxidized from long-chain fatty acids could be used to treat metabolic disorders. Glycerolipids play important roles in pathological environments, such as those of cancers or metabolic disorders, and thus are regarded as a potential therapeutic target. Phospholipids represent the main building unit of the plasma membrane of cells, and play key roles in cellular signaling. Due to their physical properties, glycerophospholipids are frequently used as pharmaceutical ingredients, in addition to being potential novel drug targets for treating disease. Sphingolipids, which comprise another component of the plasma membrane, have their own distinct biological functions and have been investigated in nanotechnological applications such as drug delivery systems. Saccharolipids, which are derived from bacteria, have endotoxin effects that stimulate the immune system. Chemically modified saccharolipids might be useful for cancer immunotherapy or as vaccine adjuvants. This review will address the important biological function of several key lipids and offer critical insights into their potential therapeutic applications.

Expression of Bcl-2 Family in 4-Nitroquinoline 1-Oxide-Induced Tongue Carcinogenesis of the Rat (백서 혀에서의 4-nitroquinoline 1-oxide 유도 발암과정에서 Bcl-2 계 유전자의 발현)

  • Choi, Jae-Wook;Chung, Sung-Su;Lee, Geum-Sug;Kim, Byung-Gook;Kim, Jae-Hyeong;Kook, Eun-Byul;Jang, Mi-Sun;Ko, Mi-Kyeong;Jung, Kwon;Choi, Hong-Ran;Kim, Ok-Joon
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.3
    • /
    • pp.301-317
    • /
    • 2005
  • The number of patients with tongue carcinoma is increasing rapidly among young individuals in many parts of the world. Oral carcinoma progresses from hyperplastic lesion through dysplasia to invasive carcinoma and the concept of "field cancerization" with molecular alteration has been suggested for oral cavity carcinogenesis. Significant improvement in treatment and prognosis will depend on more detailed understanding of the multi-step process leading to cancer development. To induce tongue carcinoma in rat by 4-NQO, each drinking water was made to 10 ppm, 25 ppm, 50 ppm and control (only D.W. without 4-NQO). Specimens were classified into 4 groups such as control, I (mild & moderate dysplasia), II (severe dysplasia and carcinoma in situ), III (carcinoma). The mRNA expressions of Bcl-2 family were evaluated by RT-PCR technique. For anti-apoptotic Bcl-2 family, mRNA expression of Bcl-w was down-regulated in all stages of tongue carcinogenesis model. However, mRNA expression of Bcl-2 was up-regulated. For pro-apoptotic Bcl-2 family, all members were down-regulated in all stages of tongue carcinogenesis model except for Bad mRNA in group III. In terms of BH3 only protein, mRNA expressions of Bok and Mcl-1 were down regulated in all stages of specimen, but Bmf in group II and BBC3 in group III were up-regulated. Our current findings demonstrated the involvements of mRNA expression of Bcl-2 family in multi-step tongue carcinogensis. This highlights the necessity for continued efforts to discover suitable biomakers (Bcl-2 family) for early diagnosis of the disease, and to understand its pathogenesis as a first step in improving methods of treatment. The discovery of these potential biomarkers and molecular targets for cancer diagnostics and therapeutics has the potential to significantly change the clinical approach and outcome of the disease.