Browse > Article
http://dx.doi.org/10.4062/biomolther.2020.131

A Novel Anti-PD-L1 Antibody Exhibits Antitumor Effects on Multiple Myeloma in Murine Models via Antibody-Dependent Cellular Cytotoxicity  

Ahn, Jae-Hee (Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University)
Lee, Byung-Hyun (Scripps Korea Antibody Institute, Kangwon National University)
Kim, Seong-Eun (Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University)
Kwon, Bo-Eun (Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University)
Jeong, Hyunjin (Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University)
Choi, Jong Rip (Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University)
Kim, Min Jung (Department of Internal Medicine, Korea University College of Medicine)
Park, Yong (Scripps Korea Antibody Institute, Kangwon National University)
Kim, Byung Soo (Scripps Korea Antibody Institute, Kangwon National University)
Kim, Dae Hee (Department of Internal Medicine, Korea University College of Medicine)
Ko, Hyun-Jeong (Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University)
Publication Information
Biomolecules & Therapeutics / v.29, no.2, 2021 , pp. 166-174 More about this Journal
Abstract
Multiple myeloma is a malignant cancer of plasma cells. Despite recent progress with immunomodulatory drugs and proteasome inhibitors, it remains an incurable disease that requires other strategies to overcome its recurrence and non-response. Based on the high expression levels of programmed death-ligand 1 (PD-L1) in human multiple myeloma isolated from bone marrow and the murine myeloma cell lines, NS-1 and MOPC-315, we propose PD-L1 molecule as a target of anti-multiple myeloma therapy. We developed a novel anti-PD-L1 antibody containing a murine immunoglobulin G subclass 2a (IgG2a) fragment crystallizable (Fc) domain that can induce antibody-dependent cellular cytotoxicity. The newly developed anti-PD-L1 antibody showed significant antitumor effects against multiple myeloma in mice subcutaneously, intraperitoneally, or intravenously inoculated with NS-1 and MOPC-315 cells. The anti-PD-L1 effects on multiple myeloma may be related to a decrease in the immunosuppressive myeloid-derived suppressor cells (MDSCs), but there were no changes in the splenic MDSCs after combined treatment with lenalidomide and the anti-PD-L1 antibody. Interestingly, the newly developed anti-PD-L1 antibody can induce antibody-dependent cellular cytotoxicity in the myeloma cells, which differs from the existing anti-PD-L1 antibodies. Collectively, we have developed a new anti-PD-L1 antibody that binds to mouse and human PD-L1 and demonstrated the antitumor effects of the antibody in several syngeneic murine myeloma models. Thus, PD-L1 is a promising target to treat multiple myeloma, and the novel anti-PD-L1 antibody may be an effective anti-myeloma drug via antibody-dependent cellular cytotoxicity effects.
Keywords
PD-L1; Multiple myeloma; Antibody-dependent cellular cytotoxicity (ADCC); Myeloid-derived suppressor cell (MDSC); Lenalidomide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gorgun, G., Samur, M. K., Cowens, K. B., Paula, S., Bianchi, G., Anderson, J. E., White, R. E., Singh, A., Ohguchi, H., Suzuki, R., Kikuchi, S., Harada, T., Hideshima, T., Tai, Y. T., Laubach, J. P., Raje, N., Magrangeas, F., Minvielle, S., Avet-Loiseau, H., Munshi, N. C., Dorfman, D. M., Richardson, P. G. and Anderson, K. C. (2015) Lenalidomide enhances immune checkpoint blockade-induced immune response in multiple myeloma. Clin. Cancer Res. 21, 4607-4618.   DOI
2 Giles, A. J., Hao, S., Padget, M., Song, H., Zhang, W., Lynes, J., Sanchez, V., Liu, Y., Jung, J., Cao, X., Fujii, R., Jensen, R., Gillespie, D., Schlom, J., Gilbert, M. R., Nduom, E. K., Yang, C., Lee, J. H., Soon-Shiong, P., Hodge, J. W. and Park, D. M. (2019) Efficient ADCC killing of meningioma by avelumab and a high-affinity natural killer cell line, haNK. JCI insight 4, e130688.   DOI
3 Ishibashi, M., Tamura, H., Sunakawa, M., Kondo-Onodera, A., Okuyama, N., Hamada, Y., Moriya, K., Choi, I., Tamada, K. and Inokuchi, K. (2016) Myeloma drug resistance induced by binding of myeloma B7-H1 (PD-L1) to PD-1. Cancer Immunol. Res. 4, 779-788.   DOI
4 Iwai, Y., Ishida, M., Tanaka, Y., Okazaki, T., Honjo, T. and Minato, N. (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl. Acad. Sci. U.S.A. 99, 12293-12297.   DOI
5 Jelinek, T. and Hajek, R. (2016) Monoclonal antibodies - A new era in the treatment of multiple myeloma. Blood Rev. 30, 101-110.   DOI
6 Jelinek, T., Paiva, B. and Hajek, R. (2018) Update on PD-1/PD-L1 inhibitors in multiple myeloma. Front. Immunol. 9, 2431.   DOI
7 Tremblay-LeMay, R., Rastgoo, N. and Chang, H. (2018) Modulating PD-L1 expression in multiple myeloma: an alternative strategy to target the PD-1/PD-L1 pathway. J. Hematol. Oncol. 11, 46.   DOI
8 Usmani, S. Z., Schjesvold, F., Oriol, A., Karlin, L., Cavo, M., Rifkin, R. M., Yimer, H. A., LeBlanc, R., Takezako, N., McCroskey, R. D., Lim, A. B. M., Suzuki, K., Kosugi, H., Grigoriadis, G., Avivi, I., Facon, T., Jagannath, S., Lonial, S., Ghori, R. U., Farooqui, M. Z. H., Marinello, P. and San-Miguel, J.; KEYNOTE-185 Investigators (2019) Pembrolizumab plus lenalidomide and dexamethasone for patients with treatment-naive multiple myeloma (KEYNOTE-185): a randomised, open-label, phase 3 trial. Lancet Haematol. 6, e448-e458.   DOI
9 Velders, M. P., van Rhijn, C. M., Oskam, E., Fleuren, G. J., Warnaar, S. O. and Litvinov, S. V. (1998) The impact of antigen density and antibody affinity on antibody-dependent cellular cytotoxicity: relevance for immunotherapy of carcinomas. Br. J. Cancer 78, 478-483.   DOI
10 Vo, M. C., Jung, S. H., Chu, T. H., Lee, H. J., Lakshmi, T. J., Park, H. S., Kim, H. J., Rhee, J. H. and Lee, J. J. (2018) Lenalidomide and programmed death-1 blockade synergistically enhances the effects of dendritic cell vaccination in a model of murine myeloma. Front. Immunol. 9, 1370.   DOI
11 Wang, L., Wang, H., Chen, H., Wang, W. D., Chen, X. Q., Geng, Q. R., Xia, Z. J. and Lu, Y. (2015) Serum levels of soluble programmed death ligand 1 predict treatment response and progression free survival in multiple myeloma. Oncotarget 6, 41228-41236.   DOI
12 Youn, J. I., Nagaraj, S., Collazo, M. and Gabrilovich, D. I. (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J. Immunol. 181, 5791-5802.   DOI
13 Lim, J., Lee, A., Lee, H. G. and Lim, J. S. (2020) Modulation of immunosuppression by oligonucleotide-based molecules and small molecules targeting myeloid-derived suppressor cells. Biomol. Ther. (Seoul) 28, 1-17.   DOI
14 Kim, E. S. (2017) Avelumab: first global approval. Drugs 77, 929-937.   DOI
15 Kipps, T. J., Parham, P., Punt, J. and Herzenberg, L. A. (1985) Importance of immunoglobulin isotype in human antibody-dependent, cell-mediated cytotoxicity directed by murine monoclonal antibodies. J. Exp. Med. 161, 1-17.   DOI
16 Ko, H. J. and Kim, Y. J. (2016) Signal transducer and activator of transcription proteins: regulators of myeloid-derived suppressor cell-mediated immunosuppression in cancer. Arch. Pharm. Res. 39, 1597-1608.   DOI
17 Lee, B. R., Kwon, B. E., Hong, E. H., Shim, A., Song, J. H., Kim, H. M., Chang, S. Y., Kim, Y. J., Kweon, M. N., Youn, J. I. and Ko, H. J. (2016) Interleukin-10 attenuates tumour growth by inhibiting interleukin-6/signal transducer and activator of transcription 3 signalling in myeloid-derived suppressor cells. Cancer Lett. 381, 156-164.   DOI
18 Lee, J. M., Seo, J. H., Kim, Y. J., Kim, Y. S., Ko, H. J. and Kang, C. Y. (2012) The restoration of myeloid-derived suppressor cells as functional antigen-presenting cells by NKT cell help and all-transretinoic acid treatment. Int. J. Cancer 131, 741-751.   DOI
19 Liu, J., Hamrouni, A., Wolowiec, D., Coiteux, V., Kuliczkowski, K., Hetuin, D., Saudemont, A. and Quesnel, B. (2007) Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-{gamma} and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood 110, 296-304.
20 Yousef, S., Marvin, J., Steinbach, M., Langemo, A., Kovacsovics, T., Binder, M., Kroger, N., Luetkens, T. and Atanackovic, D. (2015) Immunomodulatory molecule PD-L1 is expressed on malignant plasma cells and myeloma-propagating pre-plasma cells in the bone marrow of multiple myeloma patients. Blood Cancer J. 5, e285.
21 Zou, W. and Chen, L. (2008) Inhibitory B7-family molecules in the tumour microenvironment. Nat. Rev. Immunol. 8, 467-477.   DOI
22 Ray, A., Das, D. S., Song, Y., Richardson, P., Munshi, N. C., Chauhan, D. and Anderson, K. C. (2015) Targeting PD1-PDL1 immune checkpoint in plasmacytoid dendritic cell interactions with T cells, natural killer cells and multiple myeloma cells. Leukemia 29, 1441-1444.   DOI
23 Choi, J. R., Kim, M. J., Tae, N., Wi, T. M., Kim, S. H., Lee, E. S. and Kim, D. H. (2020) BLI-based functional assay in phage display benefits the development of a PD-L1-targeting therapeutic antibody. Viruses 12, 684.   DOI
24 Deng, L., Liang, H., Burnette, B., Beckett, M., Darga, T., Weichselbaum, R. R. and Fu, Y. X. (2014) Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J. Clin. Invest. 124, 687-695.   DOI
25 Mateos, M. V., Blacklock, H., Schjesvold, F., Oriol, A., Simpson, D., George, A., Goldschmidt, H., Larocca, A., Chanan-Khan, A., Sherbenou, D., Avivi, I., Benyamini, N., Iida, S., Matsumoto, M., Suzuki, K., Ribrag, V., Usmani, S. Z., Jagannath, S., Ocio, E. M., Rodriguez-Otero, P., San Miguel, J., Kher, U., Farooqui, M., Liao, J., Marinello, P. and Lonial, S.; KEYNOTE-183 Investigators (2019) Pembrolizumab plus pomalidomide and dexamethasone for patients with relapsed or refractory multiple myeloma (KEYNOTE-183): a randomised, open-label, phase 3 trial. Lancet Haematol. 6, e459-e469.   DOI
26 Nam, S., Lee, A., Lim, J. and Lim, J. S. (2019) Analysis of the expression and regulation of pd-1 protein on the surface of myeloid-derived suppressor cells (MDSCs). Biomol. Ther. (Seoul) 27, 63-70.   DOI
27 Palumbo, A. and Anderson, K. (2011) Multiple myeloma. N. Engl. J. Med. 364, 1046-1060.   DOI
28 Richardson, P. G., Laubach, J., Gandolfi, S., Facon, T., Weisel, K. and O'Gorman, P. (2018) Maintenance and continuous therapy for multiple myeloma. Expert Rev. Anticancer Ther. 18, 751-764.   DOI
29 Song, J. H., Shim, A., Kim, Y. J., Ahn, J. H., Kwon, B. E., Pham, T. T., Lee, J., Chang, S. Y. and Ko, H. J. (2018) Antiviral and anti-inflammatory activities of pochonin D, a heat shock protein 90 inhibitor, against rhinovirus infection. Biomol. Ther. (Seoul) 26, 576-583.   DOI
30 Tamura, H., Ishibashi, M., Yamashita, T., Tanosaki, S., Okuyama, N., Kondo, A., Hyodo, H., Shinya, E., Takahashi, H., Dong, H., Tamada, K., Chen, L., Dan, K. and Ogata, K. (2013) Marrow stromal cells induce B7-H1 expression on myeloma cells, generating aggressive characteristics in multiple myeloma. Leukemia 27, 464-472.   DOI
31 Dhodapkar, M. V., Sexton, R., Das, R., Dhodapkar, K. M., Zhang, L., Sundaram, R., Soni, S., Crowley, J. J., Orlowski, R. Z. and Barlogie, B. (2015) Prospective analysis of antigen-specific immunity, stem-cell antigens, and immune checkpoints in monoclonal gammopathy. Blood 126, 2475-2478.