• Title/Summary/Keyword: Cancer stem cells

Search Result 351, Processing Time 0.033 seconds

Identification of Cell Type-Specific Effects of DNMT3A Mutations on Relapse in Acute Myeloid Leukemia

  • Seo-Gyeong Bae;Hyeoung-Joon Kim;Mi Yeon Kim;Dennis Dong Hwan Kim;So-I Shin;Jae-Sook Ahn;Jihwan Park
    • Molecules and Cells
    • /
    • v.46 no.10
    • /
    • pp.611-626
    • /
    • 2023
  • Acute myeloid leukemia (AML) is a heterogeneous disease caused by distinctive mutations in individual patients; therefore, each patient may display different cell-type compositions. Although most patients with AML achieve complete remission (CR) through intensive chemotherapy, the likelihood of relapse remains high. Several studies have attempted to characterize the genetic and cellular heterogeneity of AML; however, our understanding of the cellular heterogeneity of AML remains limited. In this study, we performed single-cell RNA sequencing (scRNAseq) of bone marrow-derived mononuclear cells obtained from same patients at different AML stages (diagnosis, CR, and relapse). We found that hematopoietic stem cells (HSCs) at diagnosis were abnormal compared to normal HSCs. By improving the detection of the DNMT3A R882 mutation with targeted scRNAseq, we identified that DNMT3A-mutant cells that mainly remained were granulocyte-monocyte progenitors (GMPs) or lymphoid-primed multipotential progenitors (LMPPs) from CR to relapse and that DNMT3A-mutant cells have gene signatures related to AML and leukemic cells. Copy number variation analysis at the single-cell level indicated that the cell type that possesses DNMT3A mutations is an important factor in AML relapse and that GMP and LMPP cells can affect relapse in patients with AML. This study advances our understanding of the role of DNMT3A in AML relapse and our approach can be applied to predict treatment outcomes.

Altered Cell to Cell Communication, Autophagy and Mitochondrial Dysfunction in a Model of Hepatocellular Carcinoma: Potential Protective Effects of Curcumin and Stem Cell Therapy

  • Tork, Ola M;Khaleel, Eman F;Abdelmaqsoud, Omnia M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8271-8279
    • /
    • 2016
  • Background: Hepato-carcinogenesis is multifaceted in its molecular aspects. Among the interplaying agents are altered gap junctions, the proteasome/autophagy system, and mitochondria. The present experimental study was designed to outline the roles of these players and to investigate the tumor suppressive effects of curcumin with or without mesenchymal stem cells (MSCs) in hepatocellular carcinoma (HCC). Materials and Methods: Adult female albino rats were divided into normal controls and animals with HCC induced by diethyl-nitrosamine (DENA) and $CCl_4$. Additional groups treated after HCC induction were: Cur/HCC which received curcumin; MSCs/HCC which received MSCs; and Cur+MSCs/HCC which received both curcumin and MSCs. For all groups there were histopathological examination and assessment of gene expression of connexin43 (Cx43), ubiquitin ligase-E3 (UCP-3), the autophagy marker LC3 and coenzyme-Q10 (Mito.Q10) mRNA by real time, reverse transcription-polymerase chain reaction, along with measurement of LC3II/LC3I ratio for estimation of autophagosome formation in the rat liver tissue. In addition, the serum levels of ALT, AST and alpha fetoprotein (AFP), together with the proinflammatory cytokines $TNF{\alpha}$ and IL-6, were determined in all groups. Results: Histopathological examination of liver tissue from animals which received DENA-$CCl_4$ only revealed the presence of anaplastic carcinoma cells and macro-regenerative nodules. Administration of curcumin, MSCs; each alone or combined into rats after induction of HCC improved the histopathological picture. This was accompanied by significant reduction in ${\alpha}$-fetoprotein together with proinflammatory cytokines and significant decrease of various liver enzymes, in addition to upregulation of Cx43, UCP-3, LC3 and Mito.Q10 mRNA. Conclusions: Improvement of Cx43 expression, nonapoptotic cell death and mitochondrial function can repress tumor growth in HCC. Administration of curcumin and/or MSCs have tumor suppressive effects as they can target these mechanisms. However, further research is still needed to verify their effectiveness.

Antioxidative Properties of Amaranth Cauline Leaf and Suppressive Effect against CT-26 Cell Proliferation of the Sausage Containing the Leaf

  • Lee, Heejeong;Joo, Nami
    • Food Science of Animal Resources
    • /
    • v.38 no.3
    • /
    • pp.570-579
    • /
    • 2018
  • The study investigated antioxidative properties and rectal cancer cell inhibition effect of amaranth (Amaranthus cruentus L.) cauline leaves (ACL) to produce the sausage with ACL powder (ACLP). Antioxidative effects of ACLP prepared with different stem lengths (10-45 cm) were evaluated through DPPH, ABTS, reducing power, total phenol, and total flavonoid. Inhibition effect on rectal cancer cells growth was also examined with CT-26 cell. To determine appropriate ACL amounts in sausage formula, response surface methodology was used. The sausages without ACL (control) and the sausage with ACL (ACLP sausage) were the subjected to the examinations of antioxidation, growth inhibition on CT-26, and physicochemical properties (pH and water content). ACLP made from the leaf with 15 cm length stem generally showed the highest antioxidative effect through results of DPPH, ABTS, reducing power, total phenol, and total flavonoid. ACLP also showed inhibition effect on the proliferation of CT-26, depending on concentration of ACLP. The surface response model showed that 4.87 g of ACLP was optimized amount for sausage production. Physicochemical properties between optimized ACLP and control sausages were not significantly different. Higher antioxidative effect of optimized ACLP sausage extract was observed (p<0.05) in antioxidation tests than control sausage extract except for DPPH. Cell viability of CT-26 cells were higher (p<0.05) in ACLP than in control sausage extracts. These results indicate that ACLP has functional effects on antioxidation activity and growth inhibition on CT-26 cell, and thus, it should be useful as a supplement in sausage, which may some effect as ACLP itself.

Cucurbitacin-I, a Naturally Occurring Triterpenoid, Inhibits the CD44 Expression in Human Ovarian Cancer Cells (난소암 세포주의 CD44 발현에 미치는 Cucurbitacin-I의 효과)

  • Seo, Hee Won;Kim, Jin-Kyung
    • Journal of Life Science
    • /
    • v.28 no.6
    • /
    • pp.733-737
    • /
    • 2018
  • Cucurbitacin-I, a natural triterpenoid derived from Cucurbitaceae family plants, exhibits a number of potentially useful pharmacological and biological activities. Indeed, the previous study demonstrated that cucurbitacin-I reduced the proliferation of colon cancer cells by enhancing apoptosis and causing cell cycle arrest at the G2/M phase. CD44, a type I transmembrane protein with the function of adhering to cells, mediates between the extracellular matrix and other cells through hyaluronic acid. Recent studies have demonstrated that an overexpression of the CD44 membrane receptor results in tumor initiation and growth, specific behaviors of cancer stem cells, the development of drug resistance, and metastasis. The aim was to examine the effect of cucurbitacin-I on CD44 expression human ovarian cancer cells because the effect of cucurbitacin-I on CD44 expression has not been reported. The expressions of CD44 mRNA and protein were detected using a quantitative real-time reverse-transcription polymerase chain reaction and a Western blot analysis, respectively. Treatment with cucurbitacin-I inhibited the expression of CD44 mRNA and protein. A subsequent analysis revealed that cucurbitacin-I blocked the phosphorylation of activator protein-1 (AP-1) and nuclear factor kappa-B ($NF-{\kappa}B$), which are key regulators of CD44 expression. Taken together, the data demonstrate that cucurbitacin-I regulates the AP-1 and $NF-{\kappa}B$ signaling pathways, leading to decreased CD44 expression.

Kanakugiol, a Compound Isolated from Lindera erythrocarpa, Promotes Cell Death by Inducing Mitotic Catastrophe after Cell Cycle Arrest

  • Lee, Jintak;Chun, Hyun-Woo;Pham, Thu-Huyen;Yoon, Jae-Hwan;Lee, Jiyon;Choi, Myoung-Kwon;Ryu, Hyung-Won;Oh, Sei-Ryang;Oh, Jaewook;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.279-286
    • /
    • 2020
  • A novel compound named 'kanakugiol' was recently isolated from Lindera erythrocarpa and showed free radical-scavenging and antifungal activities. However, the details of the anti-cancer effect of kanakugiol on breast cancer cells remain unclear. We investigated the effect of kanakugiol on the growth of MCF-7 human breast cancer cells. Kanakugiol affected cell cycle progression, and decreased cell viability in MCF-7 cells in a dose-dependent manner. It also enhanced PARP cleavage (50 kDa), whereas DNA laddering was not induced. FACS analysis with annexin V-FITC/PI staining showed necrosis induction in kanakugiol-treated cells. Caspase-9 cleavage was also induced. Expression of death receptors was not altered. However, Bcl-2 expression was suppressed, and mitochondrial membrane potential collapsed, indicating limited apoptosis induction by kanakugiol. Immunofluorescence analysis using α-tubulin staining revealed mitotic exit without cytokinesis (4N cells with two nuclei) due to kanakugiol treatment, suggesting that mitotic catastrophe may have been induced via microtubule destabilization. Furthermore, cell cycle analysis results also indicated mitotic catastrophe after cell cycle arrest in MCF-7 cells due to kanakugiol treatment. These findings suggest that kanakugiol inhibits cell proliferation and promotes cell death by inducing mitotic catastrophe after cell cycle arrest. Thus, kanakugiol shows potential for use as a drug in the treatment of human breast cancer.

Cellular Mechanism of Newly Synthesized Indoledione Derivative-induced Immunological Death of Tumor Cell

  • Oh, Su-Jin;Ryu, Chung-Kyu;Baek, So-Young;Lee, Hyun-Ah
    • IMMUNE NETWORK
    • /
    • v.11 no.6
    • /
    • pp.383-389
    • /
    • 2011
  • Background: EY-6 is one of the newly synthesized indoledione derivatives to induce tumor cell-specific cell death. In this study, we investigated the mechanism of immunological death induced by EY-6 at mouse colon cancer cell as well as at the normal immune cell represented by dendritic cell. Methods: C57BL/6 mouse syngeneic colon cancer cell MC38 was treated with EY-6, and analyzed by MTT for viability test, flow cytometry for confirming surface expressing molecules and ELISA for detection of cytokine secretion. Normal myeloid-dendritic cell (DC) was ex vivo cultured from bone marrow hematopoietic stem cells of C57BL/6 mice with GM-CSF and IL-4 to analyze the DC uptake of dead tumor cells and to observe the effect of EY-6 on the normal DC. Results: EY-6 killed the MC38 tumor cells in a dose dependent manner (25, 50 and $100{\mu}M$) with carleticulin induction. And EY-6 induced the secretion of IFN-${\gamma}$ but not of TNF-${\alpha}$ from the MC38 tumor cells. EY-6 did not kill the ex-vivo cultured DCs at the dose killing tumor cells and did slightly but not significantly induced the DC maturation. The OVA-specific cross-presentation ability of DC was not induced by chemical treatment (both MHC II and MHC I-restricted antigen presentation). Conclusion: Data indicate that the EY-6 induced tumor cell specific and immunological cell death by modulation of tumor cell phenotype and cytokine secretion favoring induction of specific immunity eliminating tumor cells.

A Modeling Study of Co-transcriptional Metabolism of hnRNP Using FMR1 Gene

  • Ro-Choi, Tae Suk;Choi, Yong Chun
    • Molecules and Cells
    • /
    • v.23 no.2
    • /
    • pp.228-238
    • /
    • 2007
  • Since molecular structure of hnRNP is not available in foreseeable future, it is best to construct a working model for hnRNP structure. A geometric problem, assembly of $700{\pm}20$ nucleotides with 48 proteins, is visualized by a frame work in which all the proteins participate in primary binding, followed by secondary, tertiary and quaternary binding with neighboring proteins without additional import. Thus, 40S hnRNP contains crown-like secondary structure (48 stemloops) and appearance of 6 petal (octamers) rose-like architectures. The proteins are wrapped by RNA. Co-transcriptional folding for RNP fibril of FMR1 gene can produce 2,571 stem-loops with frequency of 1 stem-loop/15.3 nucleotides and 53 40S hnRNP beaded structure. By spliceosome driven reactions, there occurs removal of 16 separate lariated RNPs, joining 17 separate beaded exonic structures and anchoring EJC on each exon junction. Skipping exon 12 has 5'GU, 3'AG and very compact folding pattern with frequency of 1 stem-loop per 12 nucleotides in short exon length (63 nucleotides). 5' end of exon 12 contains SS (Splicing Silencer) element of UAGGU. In exons 10, 15 and 17 where both regular and alternative splice sites exist, SS (hnRNP A1 binding site) is observed at the regular splicing site. End products are mature FMR-1 mRNP, 4 species of Pri-microRNAs derived from introns 7,9,15 and 3'UTR of exon17, respectively. There may also be some other regulatory RNAs containing ALU/Line elements as well.

Structure-Activity Relationship of Xanthones from Mesua daphnifolia and Garcinia nitida towards Human Estrogen Receptor Nagative Breast Cancer Cell Line

  • Ee, G.C.L.;Lim, C.K.;Rahmat, A.
    • Natural Product Sciences
    • /
    • v.11 no.4
    • /
    • pp.220-224
    • /
    • 2005
  • Extensive chemical studies on the stem bark extracts of two Guttifereous plants namely Mesua daphnifolia and Garcinia nitida have led to the isolation of eight xanthones. Mesua daphnifolia gave cudraxanthone G (1), ananixanthone (2), 1,3,5-trihydroxy-4-methoxyxanthone (3) and euxanthone (4) while Garcinia nitida gave inophyllin B (5), 1,3,7-trihydroxy-2,4-bis (3-methylbut-2-enyl)xanthone (6), 3-isomangostin (7) and rubraxanthone (8). All these compounds were assayed against the MDA-MB-231 (human estrogen receptor negative breast cancer) cells. A structure-activity relationship study showed that structurally, all the 1, 3-oxygenated xanthones which carried unsaturated prenyl side chains (either 3-methylbut-2-enyl or 1,1-dimethyl-2-propenyl) at carbones C-2 and C-4 in the xanthone ring A are essential for the outstanding activities in the assay.

Different Cytokine Dependency of Proneural to Mesenchymal Glioma Stem Cell Transition in Tumor Microenvironments (종양미세환경에서 이질적인 사이토카인에 의한 PN-MES 뇌종양줄기세포 전이 조절)

  • Lee, Seon Yong;Kim, Hyunggee
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.530-536
    • /
    • 2019
  • Glioblastoma (GBM) is the most incurable brain cancer derived from the transformed glial cells. Standard anti-GBM treatment, including surgery and chemoradiotherapy, does not ensure good prognosis for the patients with GBM, because successful therapy is often impeded by presence of glioma stem cells (GSCs). GSCs, which is generally divided into proneural (PN) and mesenchymal (MES) subtype, are understood as subpopulation of cancer cells responsible for GBM initiation, progression and recurrence after standard treatments. In the present study, we demonstrate that PN subtype GSCs differentially transit to MES subtype GSCs by specific cytokines. The expression of CD44, a marker of MES subtype GSCs, was observed when GSC11 PN subtype GSCs were exposed to tumor necrosis factor alpha ($TNF-{\alpha}$) cytokine and GSC23 PN subtype GSCs were treated to transforming growth factor beta 1 ($TGF-{\beta}1$) cytokine. Ivy glioblastoma atlas project (Ivy GAP) bioinformatics database showed that $TNF-{\alpha}$ and $TGF-{\beta}1$ were highly expressed in necrotic region and perivascular region, respectively. In addition, $TNF-{\alpha}$ signaling was relatively upregulated in necrotic region, while $TGF-{\beta}$ signaling was increased in perivascular region. Taken together, our observations suggest that MES subtype GSCs can be derived from various PN subtype GSCs by multimodal cytokine stimuli provided by neighboring tumor microenvironment.

In Vivo Efficacy of Recombinant Leukotactin-1 against Cyclophosphamide

  • Lee, Gue-Wha;Lee, Kong-Ju;Chun, Eun-Young;Lim, In-Whan;Lee, Eun-Kyoung;Park, Mu-Rim;Kim, Dong-Il;Park, Doo-Hong;Yeup Yoon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.1
    • /
    • pp.7-11
    • /
    • 2004
  • Leukotactin-1 (Lkn-1), a human CC chemokine, has been demonstrated to induce chemotaxis of neutrophils, monocytes, eosinophils and Iym phocytes and has been shown to suppress colony formation of hematopoietic stem and progenitor cells (HSPC) in vitro and in vivo. The temporal suppression of HSPC by chemokines could potentially be applicable for various indications, such as the protection of HSPC from the several anti-proliferating chemotherapeutics in cancer treatments. In order to evaluate the protective effects on myeloid progenitor cells, the recombinant Lkn-1 was produced by Pichia pastoris and tested with cyclophosphamide, cytotoxic chemotherapeutics. The pretreatment of Lkn-1 increased the number of HSPC in bone marrow as well as the potency of resulting progenitor cells after the treatment of cyclophosphamide. Af-ter the first cycle of cyclophosphamide treatment these protections of HSPC correlated with the increased number of white blood cells and neutrophils in the peripheral blood. In lethal conditions created by the repeated administration of cyclophosphamide, the treatment of Lkn-1 enhanced the survival of mice, suggesting the potential use of Lkn-1 as the protective agent for HSPC from various cytotoxic insults.