• Title/Summary/Keyword: Cancer models

Search Result 845, Processing Time 0.025 seconds

A review on three dimensional scaffolds for tumor engineering

  • Ceylan, Seda;Bolgen, Nimet
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.3 no.3
    • /
    • pp.141-155
    • /
    • 2016
  • Two-dimensional (2D) cell culture and in vivo cancer model systems have been used to understand cancer biology and develop drug delivery systems for cancer therapy. Although cell culture and in vivo model studies have provided critical contribution about disease mechanism, these models present important problems. 2D tissue culture models lack of three dimensional (3D) structure, while animal models are expensive, time consuming, and inadequate to reflect human tumor biology. Up to the present, scaffolds and 3D matrices have been used for many different clinical applications in regenerative medicine such as heart valves, corneal implants and artificial cartilage. While tissue engineering has focused on clinical applications in regenerative medicine, scaffolds can be used in in vitro tumor models to better understand tumor relapse and metastasis. Because 3D in vitro models can partially mimic the tumor microenvironment as follows. This review focuses on different scaffold production techniques and polymer types for tumor model applications in cancer tissue engineering and reports recent studies about in vitro 3D polymeric tumor models including breast, ewing sarcoma, pancreas, oral, prostate and brain cancers.

Different Association of Manganese Superoxide Dismutase Gene Polymorphisms with Risk of Prostate, Esophageal, and Lung Cancers: Evidence from a Meta-analysis of 20,025 Subjects

  • Sun, Guo-Gui;Wang, Ya-Di;Lu, Yi-Fang;Hu, Wan-Ning
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1937-1943
    • /
    • 2013
  • Altered expression or function of manganese superoxide dismutase (MnSOD) has been shown to be associated with cancer risk but assessment of gene polymorphisms has resulted in inconclusive data. Here a search of published data was made and 22 studies were recruited, covering 20,025 case and control subjects, for meta-analyses of the association of MnSOD polymorphisms with the risk of prostate, esophageal, and lung cancers. The data on 12 studies of prostate cancer (including 4,182 cases and 6,885 controls) showed a statistically significant association with the risk of development in co-dominant models and dominant models, but not in the recessive model. Subgroup analysis showed there was no statistically significant association of MnSOD polymorphisms with aggressive or nonaggressive prostate cancer in different genetic models. In addition, the data on four studies of esophageal cancer containing 620 cases and 909 controls showed a statistically significant association between MnSOD polymorphisms and risk in all comparison models. In contrast, the data on six studies of lung cancer with 3,375 cases and 4,050 controls showed that MnSOD polymorphisms were significantly associated with the decreased risk of lung cancer in the homozygote and dominant models, but not the heterozygote model. A subgroup analysis of the combination of MnSOD polymorphisms with tobacco smokers did not show any significant association with lung cancer risk, histological type, or clinical stage of lung cancer. The data from the current study indicated that the Ala allele MnSOD polymorphism is associated with increased risk of prostate and esophageal cancers, but with decreased risk of lung cancer. The underlying molecular mechanisms warrant further investigation.

Comparison of Bayesian Spatial Ecological Regression Models for Investigating the Incidence of Breast Cancer in Iran, 2005- 2008

  • Khoshkar, Ahmad Haddad;Koshki, Tohid Jafari;Mahaki, Behzad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.5669-5673
    • /
    • 2015
  • Background: Breast cancer is the most prevalent kind of cancer among women in Iran. Regarding the importance of cancer prevention and considerable variation of breast cancer incidence in different parts of the country, it is necessary to recognize regions with high incidence of breast cancer and evaluate the role of potential risk factors by use of advanced statistical models. The present study focussed on incidence of breast cancer in Iran at the province level and also explored the impact of some prominent covariates using Bayesian models. Materials and Methods: All patients diagnosed with breast cancer in Iran from 2005 to 2008 were included in the study. Smoking, fruit and vegetable intake, physical activity, obesity and the Human Development Index (HDI), measured at the province level, were considered as potential modulating factors. Gamma-Poisson, log normal and BYM models were used to estimate the relative risk of breast cancer in this ecological investigation with and without adjustment for the covariates. Results: The unadjusted BYM model had the best fit among applied models. Without adjustment, Isfahan, Yazd, and Tehran had the highest incidences and Sistan- Baluchestan and Chaharmahal-Bakhtiari had the lowest. With the adjusted model, Khorasan-Razavi, Lorestan and Hamedan had the highest and Ardebil and Kohgiluyeh-Boyerahmad the lowest incidences. A significantly direct association was found between breast cancer incidence and HDI. Conclusions: BYM model has better fit, because it contains parameters that allow including effects from neighbors. Since HDI is a significant variable, it is also recommended that HDI should be considered in future investigations. This study showed that Yazd, Isfahan and Tehran provinces feature the highest crude incidences of breast cancer.

Application of Cox and Parametric Survival Models to Assess Social Determinants of Health Affecting Three-Year Survival of Breast Cancer Patients

  • Mohseny, Maryam;Amanpour, Farzaneh;Mosavi-Jarrahi, Alireza;Jafari, Hossein;Moradi-Joo, Mohammad;Monfared, Esmat Davoudi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.sup3
    • /
    • pp.311-316
    • /
    • 2016
  • Breast cancer is one of the most common causes of cancer mortality in Iran. Social determinants of health are among the key factors affecting the pathogenesis of diseases. This cross-sectional study aimed to determine the social determinants of breast cancer survival time with parametric and semi-parametric regression models. It was conducted on male and female patients diagnosed with breast cancer presenting to the Cancer Research Center of Shohada-E-Tajrish Hospital from 2006 to 2010. The Cox proportional hazard model and parametric models including the Weibull, log normal and log-logistic models were applied to determine the social determinants of survival time of breast cancer patients. The Akaike information criterion (AIC) was used to assess the best fit. Statistical analysis was performed with STATA (version 11) software. This study was performed on 797 breast cancer patients, aged 25-93 years with a mean age of 54.7 (${\pm}11.9$) years. In both semi-parametric and parametric models, the three-year survival was related to level of education and municipal district of residence (P<0.05). The AIC suggested that log normal distribution was the best fit for the three-year survival time of breast cancer patients. Social determinants of health such as level of education and municipal district of residence affect the survival of breast cancer cases. Future studies must focus on the effect of childhood social class on the survival times of cancers, which have hitherto only been paid limited attention.

Exploring Factors Related to Metastasis Free Survival in Breast Cancer Patients Using Bayesian Cure Models

  • Jafari-Koshki, Tohid;Mansourian, Marjan;Mokarian, Fariborz
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9673-9678
    • /
    • 2014
  • Background: Breast cancer is a fatal disease and the most frequently diagnosed cancer in women with an increasing pattern worldwide. The burden is mostly attributed to metastatic cancers that occur in one-third of patients and the treatments are palliative. It is of great interest to determine factors affecting time from cancer diagnosis to secondary metastasis. Materials and Methods: Cure rate models assume a Poisson distribution for the number of unobservable metastatic-component cells that are completely deleted from the non-metastasis patient body but some may remain and result in metastasis. Time to metastasis is defined as a function of the number of these cells and the time for each cell to develop a detectable sign of metastasis. Covariates are introduced to the model via the rate of metastatic-component cells. We used non-mixture cure rate models with Weibull and log-logistic distributions in a Bayesian setting to assess the relationship between metastasis free survival and covariates. Results: The median of metastasis free survival was 76.9 months. Various models showed that from covariates in the study, lymph node involvement ratio and being progesterone receptor positive were significant, with an adverse and a beneficial effect on metastasis free survival, respectively. The estimated fraction of patients cured from metastasis was almost 48%. The Weibull model had a slightly better performance than log-logistic. Conclusions: Cure rate models are popular in survival studies and outperform other models under certain conditions. We explored the prognostic factors of metastatic breast cancer from a different viewpoint. In this study, metastasis sites were analyzed all together. Conducting similar studies in a larger sample of cancer patients as well as evaluating the prognostic value of covariates in metastasis to each site separately are recommended.

Validity of patient-derived xenograft mouse models for lung cancer based on exome sequencing data

  • Kim, Jaewon;Rhee, Hwanseok;Kim, Jhingook;Lee, Sanghyuk
    • Genomics & Informatics
    • /
    • v.18 no.1
    • /
    • pp.3.1-3.8
    • /
    • 2020
  • Patient-derived xenograft (PDX) mouse models are frequently used to test the drug efficacy in diverse types of cancer. They are known to recapitulate the patient characteristics faithfully, but a systematic survey with a large number of cases is yet missing in lung cancer. Here we report the comparison of genomic characters between mouse and patient tumor tissues in lung cancer based on exome sequencing data. We established PDX mouse models for 132 lung cancer patients and performed whole exome sequencing for trio samples of tumor-normal-xenograft tissues. Then we computed the somatic mutations and copy number variations, which were used to compare the PDX and patient tumor tissues. Genomic and histological conclusions for validity of PDX models agreed in most cases, but we observed eight (~7%) discordant cases. We further examined the changes in mutations and copy number alterations in PDX model production and passage processes, which highlighted the clonal evolution in PDX mouse models. Our study shows that the genomic characterization plays complementary roles to the histological examination in cancer studies utilizing PDX mouse models.

Modeling Age-specific Cancer Incidences Using Logistic Growth Equations: Implications for Data Collection

  • Shen, Xing-Rong;Feng, Rui;Chai, Jing;Cheng, Jing;Wang, De-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9731-9737
    • /
    • 2014
  • Large scale secular registry or surveillance systems have been accumulating vast data that allow mathematical modeling of cancer incidence and mortality rates. Most contemporary models in this regard use time series and APC (age-period-cohort) methods and focus primarily on predicting or analyzing cancer epidemiology with little attention being paid to implications for designing cancer registry, surveillance or evaluation initiatives. This research models age-specific cancer incidence rates using logistic growth equations and explores their performance under different scenarios of data completeness in the hope of deriving clues for reshaping relevant data collection. The study used China Cancer Registry Report 2012 as the data source. It employed 3-parameter logistic growth equations and modeled the age-specific incidence rates of all and the top 10 cancers presented in the registry report. The study performed 3 types of modeling, namely full age-span by fitting, multiple 5-year-segment fitting and single-segment fitting. Measurement of model performance adopted adjusted goodness of fit that combines sum of squred residuals and relative errors. Both model simulation and performance evalation utilized self-developed algorithms programed using C# languade and MS Visual Studio 2008. For models built upon full age-span data, predicted age-specific cancer incidence rates fitted very well with observed values for most (except cervical and breast) cancers with estimated goodness of fit (Rs) being over 0.96. When a given cancer is concerned, the R valuae of the logistic growth model derived using observed data from urban residents was greater than or at least equal to that of the same model built on data from rural people. For models based on multiple-5-year-segment data, the Rs remained fairly high (over 0.89) until 3-fourths of the data segments were excluded. For models using a fixed length single-segment of observed data, the older the age covered by the corresponding data segment, the higher the resulting Rs. Logistic growth models describe age-specific incidence rates perfectly for most cancers and may be used to inform data collection for purposes of monitoring and analyzing cancer epidemic. Helped by appropriate logistic growth equations, the work vomume of contemporary data collection, e.g., cancer registry and surveilance systems, may be reduced substantially.

A Study on Predicting Lung Cancer Using RNA-Sequencing Data with Ensemble Learning (앙상블 기법을 활용한 RNA-Sequencing 데이터의 폐암 예측 연구)

  • Geon AN;JooYong PARK
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.2 no.1
    • /
    • pp.7-14
    • /
    • 2024
  • In this paper, we explore the application of RNA-sequencing data and ensemble machine learning to predict lung cancer and treatment strategies for lung cancer, a leading cause of cancer mortality worldwide. The research utilizes Random Forest, XGBoost, and LightGBM models to analyze gene expression profiles from extensive datasets, aiming to enhance predictive accuracy for lung cancer prognosis. The methodology focuses on preprocessing RNA-seq data to standardize expression levels across samples and applying ensemble algorithms to maximize prediction stability and reduce model overfitting. Key findings indicate that ensemble models, especially XGBoost, substantially outperform traditional predictive models. Significant genetic markers such as ADGRF5 is identified as crucial for predicting lung cancer outcomes. In conclusion, ensemble learning using RNA-seq data proves highly effective in predicting lung cancer, suggesting a potential shift towards more precise and personalized treatment approaches. The results advocate for further integration of molecular and clinical data to refine diagnostic models and improve clinical outcomes, underscoring the critical role of advanced molecular diagnostics in enhancing patient survival rates and quality of life. This study lays the groundwork for future research in the application of RNA-sequencing data and ensemble machine learning techniques in clinical settings.

The Cancer-Preventive Potential of Panax ginseng - A Review of Human and Experimental Evidence - (인삼(Panax ginseng) 항암 효과에 관한 문헌고찰 - 실험연구와 역학연구 결과를 중심으로 -)

  • Kim, Joon-Youn;Lee, Duk-Hee;Yun, Taik-Koo;Morgan, Gareth;Vainio, Harri;Shin, Hai-Rim
    • Journal of Preventive Medicine and Public Health
    • /
    • v.33 no.4
    • /
    • pp.383-392
    • /
    • 2000
  • Objective : We have reviewed the potential cancer preventive and other relevant properties of Panax ginseng C. A. Meyer, which has been traditionally used as a natural tonic in oriental countries. Data identification and study selection: Publications on Panax ginseng and its relation to cancer were obtained from the Medline database (1983-2000) and by checking reference lists to find earlier reports. The reports cover experimental models and human studies on cancer-preventive activity, carcinogenicity and other beneficial or adverse effects. In addition, possible mechanisms of chemoprevention by ginseng were also considered. Results : Published results from a cohort and two case-control studies in Korea suggest that the intake of ginseng may reduce the risk of several types of cancer. When ginseng was tested in animal models, a reduction in cancer incidence and multiplicity at various sites was noted. Panax ginseng and its chemical constituents have been tested for their inhibiting effect on putative carcinogenesis mechanisms (e.g., cell proliferation and apoptosis, immunosurveillance, angiogenesis); in most experiments inhibitory effects were found. Conclusion : While Panax ginseng C. A. Meyer has shown cancer preventive effects both in experimental models and in epidemiological studies, the evidence is currently not conclusive as to its cancer-preventive activity in humans. The available evidence warrants further research into the possible role of ginseng in the prevention of human cancer and carcinogenesis.

  • PDF

Compliance with Screening Recommendations According to Breast Cancer Risk Levels in Izmir, Turkey

  • Acikgoz, Ayla;Ergor, Gul
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1737-1742
    • /
    • 2013
  • Early diagnosis has a major role in improving prognosis of breast cancer. The purpose of this study was to assess the risk status of women 35-69 years of age using risk assessment models and the prevalence of mammography in a community setting. The sample of this cross sectional study consisted of 227 women, 35-69 years of age residing in Izmir, a city located in western region of Turkey. A questionnaire was used to collect data and the Gail and Cuzick-Tyrer models were applied to assess the risk of breast cancer. In this study, 52.7% of women had mammography at least once, and 41.3% of the women over the age of 40 had mammography screening in the last two years. The five years risk for breast cancer was high in 15.8% of women according to the Gail model and ten years risk was high in 21.7% with the Cuzick-Tyrer model. In the present study, the breast cancer risk levels were assessed in a population setting for the first time in Turkey using breast cancer risk level assessment models. Being in 60-69 age group, having low education and not being in menopause were significant risk factors for not having mammography according to logistic regression analysis. Mammography utilization rate was low. Women must be educated about breast cancer screening methods and early diagnosis. The women in the high risk group should be informed on their risk status which may increase their attendance at breast cancer screening.