• 제목/요약/키워드: Cancer Immunotherapy

검색결과 237건 처리시간 0.024초

Co-Stimulatory Receptors in Cancers and Their Implications for Cancer Immunotherapy

  • Seongju Jeong;Su-Hyung Park
    • IMMUNE NETWORK
    • /
    • 제20권1호
    • /
    • pp.3.1-3.20
    • /
    • 2020
  • Immune checkpoint inhibitors (ICIs), including anti-PD-1 and anti-CTLA-4 therapeutic agents, are now approved by the Food and Drug Administration for treatment of various types of cancer. However, the therapeutic efficacy of ICIs varies among patients and cancer types. Moreover, most patients do not develop durable antitumor responses after ICI therapy due to an ephemeral reversal of T-cell dysfunction. As co-stimulatory receptors play key roles in regulating the effector functions of T cells, activating co-stimulatory pathways may improve checkpoint inhibition efficacy, and lead to durable antitumor responses. Here, we review recent advances in our understating of co-stimulatory receptors in cancers, providing the necessary groundwork for the rational design of cancer immunotherapy.

Cancer immunotherapy with T-cell targeting cytokines: IL-2 and IL-7

  • Kim, Ji-Hae;Lee, Kun-Joo;Lee, Seung-Woo
    • BMB Reports
    • /
    • 제54권1호
    • /
    • pp.21-30
    • /
    • 2021
  • Clinical trials have demonstrated that an increased number of effector cells, especially tumor-specific T cells, is positively linked with patients' prognosis. Although the discovery of checkpoint inhibitors (CPIs) has led to encouraging progress in cancer immunotherapy, the lack of either T cells or targets for CPIs is a limitation for patients with poor prognosis. Since interleukin (IL)-2 and IL-7 are cytokines that target many aspects of T-cell responses, they have been used to treat cancers. In this review, we focus on the basic biology of how these cytokines regulate T-cell response and on the clinical trials using the cytokines against cancer. Further, we introduce several recent studies that aim to improve cytokines' biological activities and find the strategy for combination with other therapeutics.

Strategies for Manipulating T Cells in Cancer Immunotherapy

  • Lee, Hyang-Mi
    • Biomolecules & Therapeutics
    • /
    • 제30권4호
    • /
    • pp.299-308
    • /
    • 2022
  • T cells are attractive targets for the development of immunotherapy to treat cancer due to their biological features, capacity of cytotoxicity, and antigen-specific binding of receptors. Novel strategies that can modulate T cell functions or receptor reactivity provide effective therapies, including checkpoint inhibitor, bispecific antibody, and adoptive transfer of T cells transduced with tumor antigen-specific receptors. T cell-based therapies have presented successful pre-clinical/clinical outcomes despite their common immune-related adverse effects. Ongoing studies will allow us to advance current T cell therapies and develop innovative personalized T cell therapies. This review summarizes immunotherapeutic approaches with a focus on T cells. Anti-cancer T cell therapies are also discussed regarding their biological perspectives, efficacy, toxicity, challenges, and opportunities.

Optimising IL-2 for Cancer Immunotherapy

  • Jonathan Sprent;Onur Boyman
    • IMMUNE NETWORK
    • /
    • 제24권1호
    • /
    • pp.5.1-5.19
    • /
    • 2024
  • The key role of T cells in cancer immunotherapy is well established and is highlighted by the remarkable capacity of Ab-mediated checkpoint blockade to overcome T-cell exhaustion and amplify anti-tumor responses. However, total or partial tumor remission following checkpoint blockade is still limited to only a few types of tumors. Hence, concerted attempts are being made to devise new methods for improving tumor immunity. Currently, much attention is being focused on therapy with IL-2. This cytokine is a powerful growth factor for T cells and optimises their effector functions. When used at therapeutic doses for cancer treatment, however, IL-2 is highly toxic. Nevertheless, recent work has shown that modifying the structure or presentation of IL-2 can reduce toxicity and lead to effective anti-tumor responses in synergy with checkpoint blockade. Here, we review the complex interaction of IL-2 with T cells: first during normal homeostasis, then during responses to pathogens, and finally in anti-tumor responses.

Regulatory T Cells in Tumor Microenvironment and Approach for Anticancer Immunotherapy

  • Jung-Ho Kim;Beom Seok Kim;Sang-Kyou Lee
    • IMMUNE NETWORK
    • /
    • 제20권1호
    • /
    • pp.4.1-4.17
    • /
    • 2020
  • Tregs have a role in immunological tolerance and immune homeostasis by suppressing immune reactions, and its therapeutic potential is critical in autoimmune diseases and cancers. There have been multiple studies conducted on Tregs because of their roles in immune suppression and therapeutic potential. In tumor immunity, Tregs can promote the development and progression of tumors by preventing effective anti-tumor immune responses in tumor-bearing hosts. High infiltration of Tregs into tumor tissue results in poor survival in various types of cancer patients. Identifying factors specifically expressed in Tregs that affect the maintenance of stability and function of Tregs is important for understanding cancer pathogenesis and identifying therapeutic targets. Thus, manipulation of Tregs is a promising anticancer strategy, but finding markers for Treg-specific depletion and controlling these cells require fine-tuning and further research. Here, we discuss the role of Tregs in cancer and the development of Treg-targeted therapies to promote cancer immunotherapy.

자연살해세포와 항암면역치료 (Natural Killer Cell and Cancer Immunotherapy)

  • 김헌식
    • 한양메디칼리뷰
    • /
    • 제33권1호
    • /
    • pp.59-64
    • /
    • 2013
  • Cancer remains the leading cause of death worldwide despite intense efforts in developing innovative treatments. Current approaches in cancer therapy are mainly directed to a selective targeting of cancer cells to avoid potential side effects associated with conventional therapy. In this respect, Natural killer (NK) cells have gained growing attention and are now being considered as promising therapeutic tools for cancer therapy owing to their intrinsic ability to rapidly recognize and kill cancer cells, while sparing normal healthy cells. NK cells play a key role in the first line of defense against transformed and virus-infected cells. NK cells sense their target through a whole array of receptors, both activating and inhibitory. Functional outcome of NK cell against target cells is determined by the balance of signals transmitted from diverse activating and inhibiting receptors. Despite significant progress made in the role of NK cells attack as a pivotal sentinel in tumor surveillance, the molecular has been that regulate NK cell responses remain unclear, which restricts the use of NK cells as a therapeutic measure. Accordingly, current efforts for NK cell-based cancer therapy have largely relied on the strategies that are based on the manipulation of inhibitory receptor function. However, if we better understand the mechanisms governing NK cell activation, including those mediated by diverse activating receptors, this knowledge can be applied to the development of optimal design for cancer immunotherapy by targeting NK cells.

Adoptive Immunotherapy for Small Cell Lung Cancer by Expanded Activated Autologous Lymphocytes: a Retrospective Clinical Analysis

  • Zhang, Guo-Qing;Li, Fang;Sun, Sheng-Jie;Hu, Yi;Wang, Gang;Wang, Yu;Cui, Xiao-Xia;Jiao, Shun-Chang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권4호
    • /
    • pp.1487-1494
    • /
    • 2015
  • Background: To investigate the clinical efficacy of expanded activated autologous lymphocytes (EAAL) in patients with small cell lung cancer (SCLC). Materials and Methods: A total of 32 SCLC patients were selected and randomly divided into EAAL treatment and control groups, 16 cases in each. EAAL were obtained by proliferation of peripheral blood mononuclear cells (PBMCs) of patients followed by phenotype determination. Clinical data of all patients were recorded. Patients of both groups were followed up and the overall survival (OS) were compared retrospectively. Results: After culture and proliferation in vitro, the percentages of $CD3^+$, $CD3^+CD8^+$, $CD45RO^+$, $CD28^+$, $CD29^+$, $CD8^+CD28^+$ and $CD3^+CD16^+/CD56^+$ cells increased markedly (p<0.05). The OS of the EAAL treatment group was longer than that of control group, but the difference was not statistically significant (p=0.060, HR=0.487, 95%CI 0.228~1.037). 1- to 3-year survival rates in EAAL treatment group were longer than those in control group, but there was still no significant difference (p>0.05). COX multivariate regression analysis showed that the number of chemotherapy cycles and the application of EAAL immunotherapy were independent prognostic factors for SCLC patients. The OS in females and chemotherapy${\leq}6$ cycles were obviously prolonged after EAAL immunotherapy. Conclusions: In vitro induction and proliferation of EAAL is easy and biologically safe. Generally, EAAL adoptive immunotherapy can evidently prolong the OS of SCLC patients.

Induction of 90K-specific Cytotoxic T Lymphocytes for Colon Cancer Immunotherapy

  • Lee, Ji-Hee;Park, Myung-Suk;Chung, Ik-Joo
    • IMMUNE NETWORK
    • /
    • 제10권6호
    • /
    • pp.206-211
    • /
    • 2010
  • Background: Dendritic cell (DC)-based tumor vaccine is an attractive modality for the treatment of colon cancer because it has been recurred and produced few side effects in patients. Secretory glycoprotein 90K has been found at elevated level in various cancer tissues and sera. We investigated to establish a more effective DC vaccine for the treatment of colon cancer in which the levels of 90K are elevated. Methods: We obtained the concentrated 90K from 293T cells stably expressing 90K. DCs were cultured from peripheral blood monocytes, and a DC vaccine pulsed with tumor lysate was compared with a DC vaccine pulsed with 90K. We measured the functional activity for CTLs by using IFN-${\gamma}$-enzyme linked immunoabsorbent spot (ELISPOT) assay. Results: DCs pulsed with tumor lysate+90K exhibited the enhanced T cell stimulation, polarization of $\ddot{i}$ T cell toward Th1. The CTLs generated by DCs pulsed with 90K efficiently lysed HCT116 cells. The results indicate that 90K-speicifc-CTLs can recognize 90K proteins naturally presented by colon cancer cells. Conclusion: Our study suggests that 90K-specific CTLs generated by 90K-pulsed DCs could be useful effector cells for immunotherapy in colon cancer.

Far Beyond Cancer Immunotherapy: Reversion of Multi-Malignant Phenotypes of Immunotherapeutic-Resistant Cancer by Targeting the NANOG Signaling Axis

  • Se Jin Oh;Jaeyoon Lee;Yukang Kim;Kwon-Ho Song;Eunho Cho;Minsung Kim;Heejae Jung;Tae Woo Kim
    • IMMUNE NETWORK
    • /
    • 제20권1호
    • /
    • pp.7.1-7.11
    • /
    • 2020
  • Cancer immunotherapy, in the form of vaccination, adoptive cellular transfer, or immune checkpoint inhibitors, has emerged as a promising practice within the field of oncology. However, despite the developing field's potential to revolutionize cancer treatment, the presence of immunotherapeutic-resistant tumor cells in many patients present a challenge and limitation to these immunotherapies. These cells not only indicate immunotherapeutic resistance, but also show multi-modal resistance to conventional therapies, abnormal metabolism, stemness, and metastasis. How can immunotherapeutic-resistant tumor cells render multi-malignant phenotypes? We reasoned that the immune-refractory phenotype could be associated with multi-malignant phenotypes and that these phenotypes are linked together by a factor that acts as the master regulator. In this review, we discussed the role of the embryonic transcription factor NANOG as a crucial master regulator we named "common factor" in multi-malignant phenotypes and presented strategies to overcome multi-malignancy in immunotherapeutic-resistant cancer by restraining the NANOG-mediated multi-malignant signaling axis. Strategies that blunt the NANOG axis could improve the clinical management of therapy-refractory cancer.

Tumour Regression via Integrative Regulation of Neurological, Inflammatory, and Hypoxic Tumour Microenvironment

  • Lee, Chang Hoon;Cho, Jungsook;Lee, Kyeong
    • Biomolecules & Therapeutics
    • /
    • 제28권2호
    • /
    • pp.119-130
    • /
    • 2020
  • Changing trends in anticancer research have altered the treatment paradigm to the extent that it is difficult to investigate any anticancer drugs without mentioning immunotherapy. Thus, we are finally contemplating tumour regression using magic bullets known as immunotherapy drugs. This review explores the possible options and pitfalls in tumour regression by first elucidating the features of cancer and the importance of tumour microenvironments. Next, we evaluated the trends of anticancer therapeutics regulating tumour microenvironment. Finally, we introduced the concept of tumour regression and various targets of tumour microenvironment, which can be used in combination with current immunotherapy for tumour regression. In particular, we emphasize the importance of regulating the neurological manifestations of tumour microenvironment (N) in addition to inflammation (I) and hypoxia (H) in cancer.