Browse > Article
http://dx.doi.org/10.4062/biomolther.2019.135

Tumour Regression via Integrative Regulation of Neurological, Inflammatory, and Hypoxic Tumour Microenvironment  

Lee, Chang Hoon (College of Pharmacy, Dongguk University)
Cho, Jungsook (College of Pharmacy, Dongguk University)
Lee, Kyeong (College of Pharmacy, Dongguk University)
Publication Information
Biomolecules & Therapeutics / v.28, no.2, 2020 , pp. 119-130 More about this Journal
Abstract
Changing trends in anticancer research have altered the treatment paradigm to the extent that it is difficult to investigate any anticancer drugs without mentioning immunotherapy. Thus, we are finally contemplating tumour regression using magic bullets known as immunotherapy drugs. This review explores the possible options and pitfalls in tumour regression by first elucidating the features of cancer and the importance of tumour microenvironments. Next, we evaluated the trends of anticancer therapeutics regulating tumour microenvironment. Finally, we introduced the concept of tumour regression and various targets of tumour microenvironment, which can be used in combination with current immunotherapy for tumour regression. In particular, we emphasize the importance of regulating the neurological manifestations of tumour microenvironment (N) in addition to inflammation (I) and hypoxia (H) in cancer.
Keywords
Immunotherapy; Tumour regression; Tumour microenvironment; Neurological; Inflammation; Hypoxia;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Ferrara, R., Mezquita, L., Texier, M., Lahmar, J., Audigier-Valette, C., Tessonnier, L., Mazieres, J., Zalcman, G., Brosseau, S., Le Moulec, S., Leroy, L., Duchemann, B., Lefebvre, C., Veillon, R., Westeel, V., Koscielny, S., Champiat, S., Ferte, C., Planchard, D., Remon, J., Boucher, M. E., Gazzah, A., Adam, J., Bria, E., Tortora, G., Soria, J. C., Besse, B. and Caramella, C. (2018) Hyperprogressive disease in patients with advanced non-small cell lung cancer treated with PD-1/PD-L1 inhibitors or with single-agent chemotherapy. JAMA Oncol. 4, 1543-1552.   DOI
2 Danhier, F. (2016) To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Control. Release 244, 108-121.   DOI
3 Ventola, C. L. (2017a) Cancer immunotherapy, part 1: current strategies and agents. P T 42, 375-383.
4 Ventola, C. L. (2017b) Cancer immunotherapy, part 2: efficacy, safety, and other clinical considerations. P T 42, 452-463.
5 Ventola, C. L. (2017c) Cancer immunotherapy, part 3: challenges and future trends. P T 42, 514-521.
6 Vergnenegre, A. and Chouaid, C. (2018) Review of economic analyses of treatment for non-small-cell lung cancer (NSCLC). Expert Rev. Pharmacoecon. Outcomes Res. 18, 519-528.   DOI
7 Verlande, A. and Masri, S. (2019) Circadian clocks and cancer: time-keeping governs cellular metabolism. Trends Endocrinol. Metab. 30, 445-458.   DOI
8 Verma, V., Sprave, T., Haque, W., Simone, C. B., 2nd, Chang, J. Y., Welsh, J. W. and Thomas, C. R., Jr. (2018) A systematic review of the cost and cost-effectiveness studies of immune checkpoint inhibitors. J. Immunother. Cancer 6, 128.   DOI
9 Vijayalaxmi, Thomas, C. R., Jr., Reiter, R. J. and Herman, T. S. (2002) Melatonin: from basic research to cancer treatment clinics. J. Clin. Oncol. 20, 2575-2601.   DOI
10 Vitale, I., Manic, G., Coussens, L. M., Kroemer, G. and Galluzzi, L. (2019) Macrophages and Metabolism in the Tumor Microenvironment. Cell Metab. 30, 36-50.   DOI
11 Turner, K. A. (2014) Radical Remission : Surviving Cancer against All Odds. HarperOne, New York, NY.
12 Warfel, N. A. and El-Deiry, W. S. (2014) HIF-1 signaling in drug resistance to chemotherapy. Curr. Med. Chem. 21, 3021-3028.   DOI
13 Wayteck, L., Breckpot, K., Demeester, J., De Smedt, S. C. and Raemdonck, K. (2014) A personalized view on cancer immunotherapy. Cancer Lett. 352, 113-125.   DOI
14 Xia, Y. and Lee, K. (2010) Targeting multidrug resistance with small molecules for cancer therapy. Biomol. Ther. (Seoul) 18, 375-385.   DOI
15 Weber, J. S., D'Angelo, S. P., Minor, D., Hodi, F. S., Gutzmer, R., Neyns, B., Hoeller, C., Khushalani, N. I., Miller, W. H., Jr., Lao, C. D., Linette, G. P., Thomas, L., Lorigan, P., Grossmann, K. F., Hassel, J. C., Maio, M., Sznol, M., Ascierto, P. A., Mohr, P., Chmielowski, B., Bryce, A., Svane, I. M., Grob, J. J., Krackhardt, A. M., Horak, C., Lambert, A., Yang, A. S. and Larkin, J. (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 16, 375-384.   DOI
16 West, H. (2014) Nivolumab as first line monotherapy for advanced non-small cell lung cancer: could we replace first line chemotherapy with immunotherapy? Transl. Lung Cancer Res. 3, 400-402.   DOI
17 Wilhelm, S., Tavares, A. J., Dai, Q., Ohta, S., Audet, J., Dvorak, H. F. and Chan, W. C. W. (2016) Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014.   DOI
18 Wolchok, J. D., Hoos, A., O'Day, S., Weber, J. S., Hamid, O., Lebbe, C., Maio, M., Binder, M., Bohnsack, O., Nichol, G., Humphrey, R. and Hodi, F. S. (2009) Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res. 15, 7412-7420.   DOI
19 Xia, A. L., Xu, Y. and Lu, X. J. (2019) Cancer immunotherapy: challenges and clinical applications. J. Med. Genet. 56, 1-3.   DOI
20 Yang, Y. (2015) Cancer immunotherapy: harnessing the immune system to battle cancer. J. Clin. Invest. 125, 3335-3337.   DOI
21 Zahl, P. H., Maehlen, J. and Welch, H. G. (2008) The natural history of invasive breast cancers detected by screening mammography. Arch. Intern. Med. 168, 2311-2316.   DOI
22 Spranger, S., Bao, R. and Gajewski, T. F. (2015) Melanoma-intrinsic ${\beta}$-catenin signalling prevents anti-tumour immunity. Nature 523, 231-235.   DOI
23 Tazdait, M., Mezquita, L., Lahmar, J., Ferrara, R., Bidault, F., Ammari, S., Balleyguier, C., Planchard, D., Gazzah, A., Soria, J. C., Marabelle, A., Besse, B. and Caramella, C. (2018) Patterns of responses in metastatic NSCLC during PD-1 or PDL-1 inhibitor therapy: Comparison of RECIST 1.1, irRECIST and iRECIST criteria. Eur. J. Cancer 88, 38-47.   DOI
24 Terry, S., Buart, S. and Chouaib, S. (2017) Hypoxic stress-induced tumor and immune plasticity, suppression, and impact on tumor heterogeneity. Front. Immunol. 8, 1625.   DOI
25 Sharma, P. and Allison, J. P. (2015) Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161, 205-214.   DOI
26 Shen, H., Sun, T., Hoang, H. H., Burchfield, J. S., Hamilton, G. F., Mittendorf, E. A. and Ferrari, M. (2017) Enhancing cancer immunotherapy through nanotechnology-mediated tumor infiltration and activation of immune cells. In Seminars in Immunology, Vol. 34, pp. 114-122. Elsevier.   DOI
27 Sivan, A., Corrales, L., Hubert, N., Williams, J. B., Aquino-Michaels, K., Earley, Z. M., Benyamin, F. W., Lei, Y. M., Jabri, B., Alegre, M.-L., Chang, E. B. and Gajewski, T. F. (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084-1089.   DOI
28 Tabebi, M., Soderkvist, P. and Jensen, L. D. (2018) Hypoxia Signaling and Circadian Disruption in and by Pheochromocytoma. Front. Endocrinol. (Lausanne) 9, 612.   DOI
29 Tartari, F., Santoni, M., Burattini, L., Mazzanti, P., Onofri, A. and Berardi, R. (2016) Economic sustainability of anti-PD-1 agents nivolumab and pembrolizumab in cancer patients: recent insights and future challenges. Cancer Treat. Rev. 48, 20-24.   DOI
30 Zaretsky, J. M., Garcia-Diaz, A., Shin, D. S., Escuin-Ordinas, H., Hugo, W., Hu-Lieskovan, S., Torrejon, D. Y., Abril-Rodriguez, G., Sandoval, S., Barthly, L., Saco, J., Homet Moreno, B., Mezzadra, R., Chmielowski, B., Ruchalski, K., Shintaku, I. P., Sanchez, P. J., Puig-Saus, C., Cherry, G., Seja, E., Kong, X., Pang, J., Berent-Maoz, B., Comin-Anduix, B., Graeber, T. G., Tumeh, P. C., Schumacher, T. N., Lo, R. S. and Ribas, A. (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819-829.   DOI
31 Fujiwara, M., Anstadt, E. J. and Clark, R. B. (2017) Cbl-b deficiency mediates resistance to programmed death-ligand 1/programmed death-1 regulation. Front. Immunol. 8, 42.
32 Zingg, D., Arenas-Ramirez, N., Sahin, D., Rosalia, R. A., Antunes, A. T., Haeusel, J., Sommer, L. and Boyman, O. (2017) The histone methyltransferase Ezh2 controls mechanisms of adaptive resistance to tumor immunotherapy. Cell Rep. 20, 854-867.   DOI
33 Zuazo-Ibarra, M., Arasanz, H., Fernandez-Hinojal, G., Gato-Canas, M., Hernandez-Marin, B., Martinez-Aguillo, M., Lecumberri, M. J., Fernandez, A., Teijeira, L., Vera, R., Kochan, G. and Escors, D. (2018) Highly differentiated CD4 T cells unequivocally identify primary resistance and risk of hyperprogression to PD-L1/PD-1 immune checkpoint blockade in lung cancer. bioRxivorg doi:10.1101/320176.
34 Zugazagoitia, J., Guedes, C., Ponce, S., Ferrer, I., Molina-Pinelo, S. and Paz-Ares, L. (2016) Current challenges in cancer treatment. Clin. Ther. 38, 1551-1566.   DOI
35 Milano, G. (2017) Resistance to immunotherapy: clouds in a bright sky. Invest. New Drugs 35, 649-654.   DOI
36 Massarelli, E., Varella-Garcia, M., Tang, X., Xavier, A. C., Ozburn, N. C., Liu, D. D., Bekele, B. N., Herbst, R. S. and Wistuba, I. I. (2007) KRAS mutation is an important predictor of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. Clin. Cancer Res. 13, 2890-2896.   DOI
37 McGranahan, N. and Swanton, C. (2017) Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168, 613-628.   DOI
38 Meyers, D. E., Bryan, P. M., Banerji, S. and Morris, D. G. (2018) Targeting the PD-1/PD-L1 axis for the treatment of non-small-cell lung cancer. Curr. Oncol. 25, e324-e334.
39 Nam, S., Lee, A., Lim, J. and Lim, J. S. (2019) Analysis of the expression and regulation of PD-1 protein on the surface of myeloid-derived suppressor cells (MDSCs). Biomol. Ther. (Seoul) 27, 63-70.   DOI
40 Natfji, A. A., Ravishankar, D., Osborn, H. M. and Greco, F. (2017) Parameters affecting the enhanced permeability and retention effect: the need for patient selection. J. Pharm. Sci. 106, 3179-3187.   DOI
41 Nathan, C. and Ding, A. (2010) Nonresolving inflammation. Cell 140, 871-882.   DOI
42 Noman, M. Z., Hasmim, M., Messai, Y., Terry, S., Kieda, C., Janji, B. and Chouaib, S. (2015) Hypoxia: a key player in antitumor immune response. A review in the theme: cellular responses to hypoxia. Am. J. Physiol., Cell Physiol. 309, C569-C579.   DOI
43 Haanen, J., Carbonnel, F., Robert, C., Kerr, K. M., Peters, S., Larkin, J. and Jordan, K.; ESMO Guidelines Committee (2018) Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 29, iv264-iv266.   DOI
44 George, S., Miao, D., Demetri, G. D., Adeegbe, D., Rodig, S. J., Shukla, S., Lipschitz, M., Amin-Mansour, A., Raut, C. P., Carter, S. L., Hammerman, P., Freeman, G. J., Wu, C. J., Ott, P. A., Wong, K. K. and Van Allen, E. M. (2017) Loss of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma. Immunity 46, 197-204.   DOI
45 Gibney, G. T., Weiner, L. M. and Atkins, M. B. (2016) Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 17, e542-e551.   DOI
46 Grady, D. (2016) Harnessing the immune system to fight cancer. In The New York Times. July 30. Available from: https://www.nytimes.com/2016/07/31/health/harnessing-the-immune-system-to-fight-cancer.html/.
47 Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell 144, 646-674.   DOI
48 Headland, S. E. and Norling, L. V. (2015) The resolution of inflammation: principles and challenges. In Seminars in immunology, Vol. 27, pp. 149-160. Elsevier.   DOI
49 Helissey, C., Vicier, C. and Champiat, S. (2016) The development of immunotherapy in older adults: new treatments, new toxicities? J. Geriatr. Oncol. 7, 325-333.   DOI
50 Hobohm, U. (2001) Fever and cancer in perspective. Cancer Immunol. Immunother. 50, 391-396.   DOI
51 Hobohm, U. (2005) Fever therapy revisited. Br. J. Cancer 92, 421-425.   DOI
52 Pardoll, D. (2015) Cancer and the immune system: basic concepts and targets for intervention. In Seminars in Oncology, Vol. 42, pp. 523-538. Elsevier.   DOI
53 Ohta, A. (2016) A metabolic immune checkpoint: adenosine in tumor microenvironment. Front. Immunol. 7, 109.   DOI
54 Ostuni, R., Kratochvill, F., Murray, P. J. and Natoli, G. (2015) Macrophages and cancer: from mechanisms to therapeutic implications. Trends Immunol. 36, 229-239.   DOI
55 Otoshi, T., Nagano, T., Tachihara, M. and Nishimura, Y. (2019) Possible Biomarkers for Cancer Immunotherapy. Cancers (Basel) 11, E935.   DOI
56 Park, J. H., Riviere, I., Gonen, M., Wang, X., Senechal, B., Curran, K. J., Sauter, C., Wang, Y., Santomasso, B. and Mead, E. (2018) Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N. Engl. J. Med. 378, 449-459.   DOI
57 Park, M. K. and Lee, C. H. (2019) Role of sphingosylphosphorylcholine in tumor and tumor microenvironment. Cancers (Basel) 11, E1696.   DOI
58 Pasquier, E., Street, J., Pouchy, C., Carre, M., Gifford, A., Murray, J., Norris, M., Trahair, T., Andre, N. and Kavallaris, M. (2013) ${\beta}$-blockers increase response to chemotherapy via direct antitumour and anti-angiogenic mechanisms in neuroblastoma. Br. J. Cancer 108, 2485-2494.   DOI
59 Pyonteck, S. M., Akkari, L., Schuhmacher, A. J., Bowman, R. L., Sevenich, L., Quail, D. F., Olson, O. C., Quick, M. L., Huse, J. T., Teijeiro, V., Setty, M., Leslie, C. S., Oei, Y., Pedraza, A., Zhang, J., Brennan, C. W., Sutton, J. C., Holland, E. C., Daniel, D. and Joyce, J. A. (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264-1272.   DOI
60 Hochhaus, A., Masszi, T., Giles, F. J., Radich, J. P., Ross, D. M., Gomez Casares, M. T., Hellmann, A., Stentoft, J., Conneally, E., Garcia-Gutierrez, V., Gattermann, N., Wiktor-Jedrzejczak, W., le Coutre, P. D., Martino, B., Saussele, S., Menssen, H. D., Deng, W., Krunic, N., Bedoucha, V. and Saglio, G. (2017) Treatment-free remission following frontline nilotinib in patients with chronic myeloid leukemia in chronic phase: results from the ENESTfreedom study. Leukemia 31, 1525-1531.   DOI
61 Hodi, F. S., Hwu, W.-J., Kefford, R., Weber, J. S., Daud, A., Hamid, O., Patnaik, A., Ribas, A., Robert, C., Gangadhar, T. C., Joshua, A. M., Hersey, P., Dronca, R., Joseph, R., Hille, D., Xue, D., Li, X. N., Kang, S. P., Ebbinghaus, S., Perrone, A. and Wolchok, J. D. (2016) Evaluation of immune-related response criteria and RECIST v1.1 in patients with advanced melanoma treated with pembrolizumab. J. Clin. Oncol. 34, 1510-1517.   DOI
62 Hoos, A. and Britten, C. M. (2012) The immuno-oncology framework: Enabling a new era of cancer therapy. Oncoimmunology 1, 334-339.   DOI
63 Hope, H. C. and Salmond, R. J. (2019) Targeting the tumor microenvironment and T cell metabolism for effective cancer immunotherapy. Eur. J. Immunol. 49, 1147-1152.   DOI
64 Jamal-Hanjani, M., Quezada, S. A., Larkin, J. and Swanton, C. (2015) Translational implications of tumor heterogeneity. Clin. Cancer Res. 21, 1258-1266.   DOI
65 Jiang, X., Li, L., Li, Y. and Li, Q. (2019) Molecular mechanisms and countermeasures of immunotherapy resistance in malignant tumor. J. Cancer 10, 1764-1771.   DOI
66 Junttila, M. R. and de Sauvage, F. J. (2013) Influence of tumour microenvironment heterogeneity on therapeutic response. Nature 501, 346-354.   DOI
67 Robert, C., Long, G. V., Brady, B., Dutriaux, C., Maio, M., Mortier, L., Hassel, J. C., Rutkowski, P., McNeil, C., Kalinka-Warzocha, E., Savage, K. J., Hernberg, M. M., Lebbe, C., Charles, J., Mihalcioiu, C., Chiarion-Sileni, V., Mauch, C., Cognetti, F., Arance, A., Schmidt, H., Schadendorf, D., Gogas, H., Lundgren-Eriksson, L., Horak, C., Sharkey, B., Waxman, I. M., Atkinson, V. and Ascierto, P. A. (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 372, 320-330.   DOI
68 Quail, D. F., Bowman, R. L., Akkari, L., Quick, M. L., Schuhmacher, A. J., Huse, J. T., Holland, E. C., Sutton, J. C. and Joyce, J. A. (2016) The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352, aad3018.   DOI
69 Quail, D. F. and Joyce, J. A. (2013) Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423-1437.   DOI
70 Ribas, A., Hamid, O., Daud, A., Hodi, F. S., Wolchok, J. D., Kefford, R., Joshua, A. M., Patnaik, A., Hwu, W.-J., Weber, J. S., Gangadhar, T. C., Hersey, P., Dronca, R., Joseph, R. W., Zarour, H., Chmielowski, B., Lawrence, D. P., Algazi, A., Rizvi, N. A., Hoffner, B., Mateus, C., Gergich, K., Lindia, J. A., Giannotti, M., Li, X. N., Ebbinghaus, S., Kang, S. P. and Robert, C. (2016) Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA 315, 1600-1609.   DOI
71 Roma-Rodrigues, C., Mendes, R., Baptista, P. V. and Fernandes, A. R. (2019) Targeting tumor microenvironment for cancer therapy. Int. J. Mol. Sci. 20, E840.   DOI
72 Kiraly, O., Gong, G., Olipitz, W., Muthupalani, S. and Engelward, B. P. (2015) Inflammation-induced cell proliferation potentiates DNA damage-induced mutations in vivo. PLoS Genet. 11, e1004901.   DOI
73 Kato, S., Goodman, A., Walavalkar, V., Barkauskas, D. A., Sharabi, A. and Kurzrock, R. (2017) Hyperprogressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate. Clin. Cancer Res. 23, 4242-4250.   DOI
74 Keating, G. M. (2015) Ledipasvir/Sofosbuvir: a review of its use in chronic hepatitis C. Drugs 75, 675-685.   DOI
75 Khalil, D. N., Smith, E. L., Brentjens, R. J. and Wolchok, J. D. (2016) The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat. Rev. Clin. Oncol. 13, 273-290.   DOI
76 Kowal, J., Kornete, M. and Joyce, J. A. (2019) Re-education of macrophages as a therapeutic strategy in cancer. Immunotherapy 11, 677-689.   DOI
77 Koyama, S., Akbay, E. A., Li, Y. Y., Herter-Sprie, G. S., Buczkowski, K. A., Richards, W. G., Gandhi, L., Redig, A. J., Rodig, S. J., Asahina, H., Jones, R. E., Kulkarni, M. M., Kuraguchi, M., Palakurthi, S., Fecci, P. E., Johnson, B. E., Janne, P. A., Engelman, J. A., Gangadharan, S. P., Costa, D. B., Freeman, G. J., Bueno, R., Hodi, F. S., Dranoff, G., Wong, K. K. and Hammerman, P. S. (2016) Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat. Commun. 7, 10501.   DOI
78 Ledford, H. (2016) Cocktails for cancer with a measure of immunotherapy. Nature 532, 162-164.   DOI
79 Lee, C. H. (2012) Resolvins as new fascinating drug candidates for inflammatory diseases. Arch. Pharm. Res. 35, 3-7.   DOI
80 Routy, B., Le Chatelier, E., Derosa, L., Duong, C. P., Alou, M. T., Daillere, R., Fluckiger, A., Messaoudene, M., Rauber, C., Roberti, M. P., Fidelle, M., Flament, C., Poirier-Colame, V., Opolon, P., Klein, C., Iribarren, K., Mondragon, L., Jacquelot, N., Qu, B., Ferrere, G., Clemenson, C., Mezquita, L., Masip, J. R., Naltet, C., Brosseau, S., Kaderbhai, C., Richard, C., Rizvi, H., Levenez, F., Galleron, N., Quinquis, B., Pons, N., Ryffel, B., Minard-Colin, V., Gonin, P., Soria, J. C., Deutsch, E., Loriot, Y., Ghiringhelli, F., Zalcman, G., Goldwasser, F., Escudier, B., Hellmann, M. D., Eggermont, A., Raoult, D., Albiges, L., Kroemer, G. and Zitvogel, L. (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91-97.   DOI
81 Alatrash, G., Jakher, H., Stafford, P. D. and Mittendorf, E. A. (2013) Cancer immunotherapies, their safety and toxicity. Expert Opin. Drug Saf. 12, 631-645.   DOI
82 Anagnostou, V., Yarchoan, M., Hansen, A. R., Wang, H., Verde, F., Sharon, E., Collyar, D., Chow, L. Q. and Forde, P. M. (2017) Immuno-oncology trial endpoints: capturing clinically meaningful activity. Clin. Cancer Res. 23, 4959-4969.   DOI
83 Bhattarai, D., Xu, X. and Lee, K. (2018) Hypoxia-inducible factor-1 (HIF-1) inhibitors from the last decade (2007 to 2016): a "structure-activity relationship" perspective. Med. Res. Rev. 38, 1404-1442.   DOI
84 Bhome, R., Bullock, M. D., Al Saihati, H. A., Goh, R. W., Primrose, J. N., Sayan, A. E. and Mirnezami, A. H. (2015) A top-down view of the tumor microenvironment: structure, cells and signaling. Front. Cell Dev. Biol. 3, 33.   DOI
85 Bohnsack, O., Hoos, A. and Ludajic, K. (2014) Adaptation of the immune related response criteria: irRECIST [Internet]. Lugano, OncologyPRO. c2014 [cited 2014 Sep 29]. Available from: https://oncologypro.esmo.org/Meeting-Resources/ESMO-2014/Adaptation-of-the-immune-related-response-criteria-irRECIST/.
86 Maeda, H. and Khatami, M. (2018) Analyses of repeated failures in cancer therapy for solid tumors: poor tumor-selective drug delivery, low therapeutic efficacy and unsustainable costs. Clin. Transl. Med. 7, 11.   DOI
87 Lee, C. H. (2018) Epithelial-mesenchymal transition: Initiation by cues from chronic inflammatory tumor microenvironment and termination by anti-inflammatory compounds and specialized pro-resolving lipids. Biochem. Pharmacol. 158, 261-273.   DOI
88 Lee, H. J., Park, M. K., Lee, E. J. and Lee, C. H. (2013) Resolvin D1 inhibits TGF-${\beta}1$-induced epithelial mesenchymal transition of A549 lung cancer cells via lipoxin A4 receptor/formyl peptide receptor 2 and GPR32. Int. J. Biochem. Cell Biol. 45, 2801-2807.   DOI
89 Lindsley, C. W. (2017) New 2016 Data and Statistics for Global Pharmaceutical Products and Projections through 2017. ACS Publications.
90 Mahon, F. X., Boquimpani, C., Kim, D. W., Benyamini, N., Clementino, N. C. D., Shuvaev, V., Ailawadhi, S., Lipton, J. H., Turkina, A. G., De Paz, R., Moiraghi, B., Nicolini, F. E., Dengler, J., Sacha, T., Takahashi, N., Fellague-Chebra, R., Acharya, S., Wong, S., Jin, Y. and Hughes, T. P. (2018) Treatment-free remission after secondline nilotinib treatment in patients with chronic myeloid leukemia in chronic phase: results from a single-group, phase 2, open-label study. Ann. Intern. Med. 168, 461-470.   DOI
91 Makale, M. T., McDonald, C. R., Hattangadi-Gluth, J. A. and Kesari, S. (2017) Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours. Nat. Rev. Neurol. 13, 52-64.   DOI
92 Mancino, M., Ametller, E., Gascon, P. and Almendro, V. (2011) The neuronal influence on tumor progression. Biochim. Biophys. Acta 1816, 105-118.
93 Saada-Bouzid, E., Defaucheux, C., Karabajakian, A., Coloma, V. P., Servois, V., Paoletti, X., Even, C., Fayette, J., Guigay, J., Loirat, D., Peyrade, F., Alt, M., Gal, J. and Le Tourneau, C. (2017) Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann. Oncol. 28, 1605-1611.   DOI
94 Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A. and Jemal, A. (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394-424.   DOI
95 Champiat, S., Dercle, L., Ammari, S., Massard, C., Hollebecque, A., Postel-Vinay, S., Chaput, N., Eggermont, A., Marabelle, A. and Soria, J.-C. (2017) Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. Clin. Cancer Res. 23, 1920-1928.   DOI
96 Ryu, D., Ryoo, I. G. and Kwak, M. K. (2018) Overexpression of CD44 standard isoform upregulates HIF-$1{\alpha}$ signaling in hypoxic breast cancer cells. Biomol. Ther. (Seoul) 26, 487-493.   DOI
97 Sambi, M., Bagheri, L. and Szewczuk, M. R. (2019) Current challenges in cancer immunotherapy: multimodal approaches to improve efficacy and patient response rates. J. Oncol. 2019, 4508794.   DOI
98 Schadendorf, D., Hodi, F. S., Robert, C., Weber, J. S., Margolin, K., Hamid, O., Patt, D., Chen, T.-T., Berman, D. M. and Wolchok, J. D. (2015) Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J. Clin. Oncol. 33, 1889-1894.   DOI
99 Semenza, G. L. (2003) Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721-732.   DOI
100 Sengupta, N., MacFie, T. S., MacDonald, T. T., Pennington, D. and Silver, A. R. (2010) Cancer immunoediting and "spontaneous" tumor regression. Pathol. Res. Pract. 206, 1-8.   DOI
101 Serhan, C. N. and Savill, J. (2005) Resolution of inflammation: the beginning programs the end. Nat. Immunol. 6, 1191-1197.   DOI
102 Seymour, L., Bogaerts, J., Perrone, A., Ford, R., Schwartz, L. H., Mandrekar, S., Lin, N. U., Litiere, S., Dancey, J., Chen, A., Hodi, F. S., Therasse, P., Hoekstra, O. S., Shankar, L. K., Wolchok, J. D., Ballinger, M., Caramella, C. and de Vries, E. G. E.; RECIST working group (2017) iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 18, e143-e152.   DOI
103 Champiat, S., Ileana, E., Giaccone, G., Besse, B., Mountzios, G., Eggermont, A. and Soria, J. C. (2014) Incorporating immune-checkpoint inhibitors into systemic therapy of NSCLC. J. Thorac. Oncol. 9, 144-153.   DOI
104 Chang, L., Chang, M., Chang, H. M. and Chang, F. (2018) Microsatellite instability: a predictive biomarker for cancer immunotherapy. Appl. Immunohistochem. Mol. Morphol. 26, e15-e21.
105 Chiriva-Internati, M. and Bot, A. (2015) A new era in cancer immunotherapy: discovering novel targets and reprogramming the immune system. Int. Rev. Immunol. 34, 101-103.   DOI
106 Choi, E. and Yang, J. W. (2018) Updates to clinical information on anticancer immunotherapy. Korean J. Clin. Pharm. 28, 65-75.   DOI
107 Chouaib, S., Noman, M., Kosmatopoulos, K. and Curran, M. (2017) Hypoxic stress: obstacles and opportunities for innovative immunotherapy of cancer. Oncogene 36, 439.   DOI
108 Crusz, S. M. and Balkwill, F. R. (2015) Inflammation and cancer: advances and new agents. Nat. Rev. Clin. Oncol. 12, 584-596.   DOI
109 Chowell, D., Morris, L. G., Grigg, C. M., Weber, J. K., Samstein, R. M., Makarov, V., Kuo, F., Kendall, S. M., Requena, D. and Riaz, N. (2018) Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 359, 582-587.   DOI
110 Cole, S. W., Nagaraja, A. S., Lutgendorf, S. K., Green, P. A. and Sood, A. K. (2015) Sympathetic nervous system regulation of the tumour microenvironment. Nat. Rev. Cancer 15, 563-572.   DOI
111 da Silva-Diz, V., Lorenzo-Sanz, L., Bernat-Peguera, A., Lopez-Cerda, M. and Munoz, P. (2018) Cancer cell plasticity: impact on tumor progression and therapy response. Semin. Cancer Biol. 53, 48-58.   DOI
112 Falletta, P., Sanchez-del-Campo, L., Chauhan, J., Effern, M., Kenyon, A., Kershaw, C. J., Siddaway, R., Lisle, R., Freter, R. and Daniels, M. J. (2017) Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma. Genes Dev. 31, 18-33.   DOI
113 Egeblad, M., Nakasone, E. S. and Werb, Z. (2010) Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell 18, 884-901.   DOI
114 Eroglu, Z., Kim, D. W., Wang, X., Camacho, L. H., Chmielowski, B., Seja, E., Villanueva, A., Ruchalski, K., Glaspy, J. A. and Kim, K. B. (2015) Long term survival with cytotoxic T lymphocyte-associated antigen 4 blockade using tremelimumab. Eur. J. Cancer 51, 2689-2697.   DOI