DOI QR코드

DOI QR Code

Tumour Regression via Integrative Regulation of Neurological, Inflammatory, and Hypoxic Tumour Microenvironment

  • Received : 2019.08.15
  • Accepted : 2019.10.08
  • Published : 2020.03.01

Abstract

Changing trends in anticancer research have altered the treatment paradigm to the extent that it is difficult to investigate any anticancer drugs without mentioning immunotherapy. Thus, we are finally contemplating tumour regression using magic bullets known as immunotherapy drugs. This review explores the possible options and pitfalls in tumour regression by first elucidating the features of cancer and the importance of tumour microenvironments. Next, we evaluated the trends of anticancer therapeutics regulating tumour microenvironment. Finally, we introduced the concept of tumour regression and various targets of tumour microenvironment, which can be used in combination with current immunotherapy for tumour regression. In particular, we emphasize the importance of regulating the neurological manifestations of tumour microenvironment (N) in addition to inflammation (I) and hypoxia (H) in cancer.

Keywords

References

  1. Alatrash, G., Jakher, H., Stafford, P. D. and Mittendorf, E. A. (2013) Cancer immunotherapies, their safety and toxicity. Expert Opin. Drug Saf. 12, 631-645. https://doi.org/10.1517/14740338.2013.795944
  2. Anagnostou, V., Yarchoan, M., Hansen, A. R., Wang, H., Verde, F., Sharon, E., Collyar, D., Chow, L. Q. and Forde, P. M. (2017) Immuno-oncology trial endpoints: capturing clinically meaningful activity. Clin. Cancer Res. 23, 4959-4969. https://doi.org/10.1158/1078-0432.CCR-16-3065
  3. Bhattarai, D., Xu, X. and Lee, K. (2018) Hypoxia-inducible factor-1 (HIF-1) inhibitors from the last decade (2007 to 2016): a "structure-activity relationship" perspective. Med. Res. Rev. 38, 1404-1442. https://doi.org/10.1002/med.21477
  4. Bhome, R., Bullock, M. D., Al Saihati, H. A., Goh, R. W., Primrose, J. N., Sayan, A. E. and Mirnezami, A. H. (2015) A top-down view of the tumor microenvironment: structure, cells and signaling. Front. Cell Dev. Biol. 3, 33. https://doi.org/10.3389/fcell.2015.00033
  5. Bohnsack, O., Hoos, A. and Ludajic, K. (2014) Adaptation of the immune related response criteria: irRECIST [Internet]. Lugano, OncologyPRO. c2014 [cited 2014 Sep 29]. Available from: https://oncologypro.esmo.org/Meeting-Resources/ESMO-2014/Adaptation-of-the-immune-related-response-criteria-irRECIST/.
  6. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A. and Jemal, A. (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394-424. https://doi.org/10.3322/caac.21492
  7. Champiat, S., Dercle, L., Ammari, S., Massard, C., Hollebecque, A., Postel-Vinay, S., Chaput, N., Eggermont, A., Marabelle, A. and Soria, J.-C. (2017) Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. Clin. Cancer Res. 23, 1920-1928. https://doi.org/10.1158/1078-0432.CCR-16-1741
  8. Champiat, S., Ileana, E., Giaccone, G., Besse, B., Mountzios, G., Eggermont, A. and Soria, J. C. (2014) Incorporating immune-checkpoint inhibitors into systemic therapy of NSCLC. J. Thorac. Oncol. 9, 144-153. https://doi.org/10.1097/JTO.0000000000000074
  9. Chang, L., Chang, M., Chang, H. M. and Chang, F. (2018) Microsatellite instability: a predictive biomarker for cancer immunotherapy. Appl. Immunohistochem. Mol. Morphol. 26, e15-e21.
  10. Chiriva-Internati, M. and Bot, A. (2015) A new era in cancer immunotherapy: discovering novel targets and reprogramming the immune system. Int. Rev. Immunol. 34, 101-103. https://doi.org/10.3109/08830185.2015.1015888
  11. Choi, E. and Yang, J. W. (2018) Updates to clinical information on anticancer immunotherapy. Korean J. Clin. Pharm. 28, 65-75. https://doi.org/10.24304/kjcp.2017.28.1.65
  12. Chouaib, S., Noman, M., Kosmatopoulos, K. and Curran, M. (2017) Hypoxic stress: obstacles and opportunities for innovative immunotherapy of cancer. Oncogene 36, 439. https://doi.org/10.1038/onc.2016.225
  13. Chowell, D., Morris, L. G., Grigg, C. M., Weber, J. K., Samstein, R. M., Makarov, V., Kuo, F., Kendall, S. M., Requena, D. and Riaz, N. (2018) Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 359, 582-587. https://doi.org/10.1126/science.aao4572
  14. Cole, S. W., Nagaraja, A. S., Lutgendorf, S. K., Green, P. A. and Sood, A. K. (2015) Sympathetic nervous system regulation of the tumour microenvironment. Nat. Rev. Cancer 15, 563-572. https://doi.org/10.1038/nrc3978
  15. Crusz, S. M. and Balkwill, F. R. (2015) Inflammation and cancer: advances and new agents. Nat. Rev. Clin. Oncol. 12, 584-596. https://doi.org/10.1038/nrclinonc.2015.105
  16. da Silva-Diz, V., Lorenzo-Sanz, L., Bernat-Peguera, A., Lopez-Cerda, M. and Munoz, P. (2018) Cancer cell plasticity: impact on tumor progression and therapy response. Semin. Cancer Biol. 53, 48-58. https://doi.org/10.1016/j.semcancer.2018.08.009
  17. Danhier, F. (2016) To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Control. Release 244, 108-121. https://doi.org/10.1016/j.jconrel.2016.11.015
  18. Egeblad, M., Nakasone, E. S. and Werb, Z. (2010) Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell 18, 884-901. https://doi.org/10.1016/j.devcel.2010.05.012
  19. Eroglu, Z., Kim, D. W., Wang, X., Camacho, L. H., Chmielowski, B., Seja, E., Villanueva, A., Ruchalski, K., Glaspy, J. A. and Kim, K. B. (2015) Long term survival with cytotoxic T lymphocyte-associated antigen 4 blockade using tremelimumab. Eur. J. Cancer 51, 2689-2697. https://doi.org/10.1016/j.ejca.2015.08.012
  20. Falletta, P., Sanchez-del-Campo, L., Chauhan, J., Effern, M., Kenyon, A., Kershaw, C. J., Siddaway, R., Lisle, R., Freter, R. and Daniels, M. J. (2017) Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma. Genes Dev. 31, 18-33. https://doi.org/10.1101/gad.290940.116
  21. Ferrara, R., Mezquita, L., Texier, M., Lahmar, J., Audigier-Valette, C., Tessonnier, L., Mazieres, J., Zalcman, G., Brosseau, S., Le Moulec, S., Leroy, L., Duchemann, B., Lefebvre, C., Veillon, R., Westeel, V., Koscielny, S., Champiat, S., Ferte, C., Planchard, D., Remon, J., Boucher, M. E., Gazzah, A., Adam, J., Bria, E., Tortora, G., Soria, J. C., Besse, B. and Caramella, C. (2018) Hyperprogressive disease in patients with advanced non-small cell lung cancer treated with PD-1/PD-L1 inhibitors or with single-agent chemotherapy. JAMA Oncol. 4, 1543-1552. https://doi.org/10.1001/jamaoncol.2018.3676
  22. Fujiwara, M., Anstadt, E. J. and Clark, R. B. (2017) Cbl-b deficiency mediates resistance to programmed death-ligand 1/programmed death-1 regulation. Front. Immunol. 8, 42.
  23. George, S., Miao, D., Demetri, G. D., Adeegbe, D., Rodig, S. J., Shukla, S., Lipschitz, M., Amin-Mansour, A., Raut, C. P., Carter, S. L., Hammerman, P., Freeman, G. J., Wu, C. J., Ott, P. A., Wong, K. K. and Van Allen, E. M. (2017) Loss of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma. Immunity 46, 197-204. https://doi.org/10.1016/j.immuni.2017.02.001
  24. Gibney, G. T., Weiner, L. M. and Atkins, M. B. (2016) Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 17, e542-e551. https://doi.org/10.1016/S1470-2045(16)30406-5
  25. Grady, D. (2016) Harnessing the immune system to fight cancer. In The New York Times. July 30. Available from: https://www.nytimes.com/2016/07/31/health/harnessing-the-immune-system-to-fight-cancer.html/.
  26. Haanen, J., Carbonnel, F., Robert, C., Kerr, K. M., Peters, S., Larkin, J. and Jordan, K.; ESMO Guidelines Committee (2018) Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 29, iv264-iv266. https://doi.org/10.1093/annonc/mdy162
  27. Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
  28. Headland, S. E. and Norling, L. V. (2015) The resolution of inflammation: principles and challenges. In Seminars in immunology, Vol. 27, pp. 149-160. Elsevier. https://doi.org/10.1016/j.smim.2015.03.014
  29. Helissey, C., Vicier, C. and Champiat, S. (2016) The development of immunotherapy in older adults: new treatments, new toxicities? J. Geriatr. Oncol. 7, 325-333. https://doi.org/10.1016/j.jgo.2016.05.007
  30. Hobohm, U. (2001) Fever and cancer in perspective. Cancer Immunol. Immunother. 50, 391-396. https://doi.org/10.1007/s002620100216
  31. Hobohm, U. (2005) Fever therapy revisited. Br. J. Cancer 92, 421-425. https://doi.org/10.1038/sj.bjc.6602386
  32. Hochhaus, A., Masszi, T., Giles, F. J., Radich, J. P., Ross, D. M., Gomez Casares, M. T., Hellmann, A., Stentoft, J., Conneally, E., Garcia-Gutierrez, V., Gattermann, N., Wiktor-Jedrzejczak, W., le Coutre, P. D., Martino, B., Saussele, S., Menssen, H. D., Deng, W., Krunic, N., Bedoucha, V. and Saglio, G. (2017) Treatment-free remission following frontline nilotinib in patients with chronic myeloid leukemia in chronic phase: results from the ENESTfreedom study. Leukemia 31, 1525-1531. https://doi.org/10.1038/leu.2017.63
  33. Hodi, F. S., Hwu, W.-J., Kefford, R., Weber, J. S., Daud, A., Hamid, O., Patnaik, A., Ribas, A., Robert, C., Gangadhar, T. C., Joshua, A. M., Hersey, P., Dronca, R., Joseph, R., Hille, D., Xue, D., Li, X. N., Kang, S. P., Ebbinghaus, S., Perrone, A. and Wolchok, J. D. (2016) Evaluation of immune-related response criteria and RECIST v1.1 in patients with advanced melanoma treated with pembrolizumab. J. Clin. Oncol. 34, 1510-1517. https://doi.org/10.1200/JCO.2015.64.0391
  34. Hoos, A. and Britten, C. M. (2012) The immuno-oncology framework: Enabling a new era of cancer therapy. Oncoimmunology 1, 334-339. https://doi.org/10.4161/onci.19268
  35. Hope, H. C. and Salmond, R. J. (2019) Targeting the tumor microenvironment and T cell metabolism for effective cancer immunotherapy. Eur. J. Immunol. 49, 1147-1152. https://doi.org/10.1002/eji.201848058
  36. Jamal-Hanjani, M., Quezada, S. A., Larkin, J. and Swanton, C. (2015) Translational implications of tumor heterogeneity. Clin. Cancer Res. 21, 1258-1266. https://doi.org/10.1158/1078-0432.CCR-14-1429
  37. Jiang, X., Li, L., Li, Y. and Li, Q. (2019) Molecular mechanisms and countermeasures of immunotherapy resistance in malignant tumor. J. Cancer 10, 1764-1771. https://doi.org/10.7150/jca.26481
  38. Junttila, M. R. and de Sauvage, F. J. (2013) Influence of tumour microenvironment heterogeneity on therapeutic response. Nature 501, 346-354. https://doi.org/10.1038/nature12626
  39. Kato, S., Goodman, A., Walavalkar, V., Barkauskas, D. A., Sharabi, A. and Kurzrock, R. (2017) Hyperprogressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate. Clin. Cancer Res. 23, 4242-4250. https://doi.org/10.1158/1078-0432.CCR-16-3133
  40. Keating, G. M. (2015) Ledipasvir/Sofosbuvir: a review of its use in chronic hepatitis C. Drugs 75, 675-685. https://doi.org/10.1007/s40265-015-0381-2
  41. Khalil, D. N., Smith, E. L., Brentjens, R. J. and Wolchok, J. D. (2016) The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat. Rev. Clin. Oncol. 13, 273-290. https://doi.org/10.1038/nrclinonc.2016.25
  42. Kiraly, O., Gong, G., Olipitz, W., Muthupalani, S. and Engelward, B. P. (2015) Inflammation-induced cell proliferation potentiates DNA damage-induced mutations in vivo. PLoS Genet. 11, e1004901. https://doi.org/10.1371/journal.pgen.1004901
  43. Kowal, J., Kornete, M. and Joyce, J. A. (2019) Re-education of macrophages as a therapeutic strategy in cancer. Immunotherapy 11, 677-689. https://doi.org/10.2217/imt-2018-0156
  44. Koyama, S., Akbay, E. A., Li, Y. Y., Herter-Sprie, G. S., Buczkowski, K. A., Richards, W. G., Gandhi, L., Redig, A. J., Rodig, S. J., Asahina, H., Jones, R. E., Kulkarni, M. M., Kuraguchi, M., Palakurthi, S., Fecci, P. E., Johnson, B. E., Janne, P. A., Engelman, J. A., Gangadharan, S. P., Costa, D. B., Freeman, G. J., Bueno, R., Hodi, F. S., Dranoff, G., Wong, K. K. and Hammerman, P. S. (2016) Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat. Commun. 7, 10501. https://doi.org/10.1038/ncomms10501
  45. Ledford, H. (2016) Cocktails for cancer with a measure of immunotherapy. Nature 532, 162-164. https://doi.org/10.1038/532162a
  46. Lee, C. H. (2012) Resolvins as new fascinating drug candidates for inflammatory diseases. Arch. Pharm. Res. 35, 3-7. https://doi.org/10.1007/s12272-012-0121-z
  47. Lee, C. H. (2018) Epithelial-mesenchymal transition: Initiation by cues from chronic inflammatory tumor microenvironment and termination by anti-inflammatory compounds and specialized pro-resolving lipids. Biochem. Pharmacol. 158, 261-273. https://doi.org/10.1016/j.bcp.2018.10.031
  48. Lee, H. J., Park, M. K., Lee, E. J. and Lee, C. H. (2013) Resolvin D1 inhibits TGF-${\beta}1$-induced epithelial mesenchymal transition of A549 lung cancer cells via lipoxin A4 receptor/formyl peptide receptor 2 and GPR32. Int. J. Biochem. Cell Biol. 45, 2801-2807. https://doi.org/10.1016/j.biocel.2013.09.018
  49. Lindsley, C. W. (2017) New 2016 Data and Statistics for Global Pharmaceutical Products and Projections through 2017. ACS Publications.
  50. Maeda, H. and Khatami, M. (2018) Analyses of repeated failures in cancer therapy for solid tumors: poor tumor-selective drug delivery, low therapeutic efficacy and unsustainable costs. Clin. Transl. Med. 7, 11. https://doi.org/10.1186/s40169-018-0185-6
  51. Mahon, F. X., Boquimpani, C., Kim, D. W., Benyamini, N., Clementino, N. C. D., Shuvaev, V., Ailawadhi, S., Lipton, J. H., Turkina, A. G., De Paz, R., Moiraghi, B., Nicolini, F. E., Dengler, J., Sacha, T., Takahashi, N., Fellague-Chebra, R., Acharya, S., Wong, S., Jin, Y. and Hughes, T. P. (2018) Treatment-free remission after secondline nilotinib treatment in patients with chronic myeloid leukemia in chronic phase: results from a single-group, phase 2, open-label study. Ann. Intern. Med. 168, 461-470. https://doi.org/10.7326/M17-1094
  52. Makale, M. T., McDonald, C. R., Hattangadi-Gluth, J. A. and Kesari, S. (2017) Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours. Nat. Rev. Neurol. 13, 52-64. https://doi.org/10.1038/nrneurol.2016.185
  53. Mancino, M., Ametller, E., Gascon, P. and Almendro, V. (2011) The neuronal influence on tumor progression. Biochim. Biophys. Acta 1816, 105-118.
  54. Massarelli, E., Varella-Garcia, M., Tang, X., Xavier, A. C., Ozburn, N. C., Liu, D. D., Bekele, B. N., Herbst, R. S. and Wistuba, I. I. (2007) KRAS mutation is an important predictor of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. Clin. Cancer Res. 13, 2890-2896. https://doi.org/10.1158/1078-0432.CCR-06-3043
  55. McGranahan, N. and Swanton, C. (2017) Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168, 613-628. https://doi.org/10.1016/j.cell.2017.01.018
  56. Meyers, D. E., Bryan, P. M., Banerji, S. and Morris, D. G. (2018) Targeting the PD-1/PD-L1 axis for the treatment of non-small-cell lung cancer. Curr. Oncol. 25, e324-e334.
  57. Milano, G. (2017) Resistance to immunotherapy: clouds in a bright sky. Invest. New Drugs 35, 649-654. https://doi.org/10.1007/s10637-017-0456-x
  58. Nam, S., Lee, A., Lim, J. and Lim, J. S. (2019) Analysis of the expression and regulation of PD-1 protein on the surface of myeloid-derived suppressor cells (MDSCs). Biomol. Ther. (Seoul) 27, 63-70. https://doi.org/10.4062/biomolther.2018.201
  59. Natfji, A. A., Ravishankar, D., Osborn, H. M. and Greco, F. (2017) Parameters affecting the enhanced permeability and retention effect: the need for patient selection. J. Pharm. Sci. 106, 3179-3187. https://doi.org/10.1016/j.xphs.2017.06.019
  60. Nathan, C. and Ding, A. (2010) Nonresolving inflammation. Cell 140, 871-882. https://doi.org/10.1016/j.cell.2010.02.029
  61. Noman, M. Z., Hasmim, M., Messai, Y., Terry, S., Kieda, C., Janji, B. and Chouaib, S. (2015) Hypoxia: a key player in antitumor immune response. A review in the theme: cellular responses to hypoxia. Am. J. Physiol., Cell Physiol. 309, C569-C579. https://doi.org/10.1152/ajpcell.00207.2015
  62. Ohta, A. (2016) A metabolic immune checkpoint: adenosine in tumor microenvironment. Front. Immunol. 7, 109. https://doi.org/10.3389/fimmu.2016.00109
  63. Ostuni, R., Kratochvill, F., Murray, P. J. and Natoli, G. (2015) Macrophages and cancer: from mechanisms to therapeutic implications. Trends Immunol. 36, 229-239. https://doi.org/10.1016/j.it.2015.02.004
  64. Otoshi, T., Nagano, T., Tachihara, M. and Nishimura, Y. (2019) Possible Biomarkers for Cancer Immunotherapy. Cancers (Basel) 11, E935. https://doi.org/10.3390/cancers11070935
  65. Pardoll, D. (2015) Cancer and the immune system: basic concepts and targets for intervention. In Seminars in Oncology, Vol. 42, pp. 523-538. Elsevier. https://doi.org/10.1053/j.seminoncol.2015.05.003
  66. Park, J. H., Riviere, I., Gonen, M., Wang, X., Senechal, B., Curran, K. J., Sauter, C., Wang, Y., Santomasso, B. and Mead, E. (2018) Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N. Engl. J. Med. 378, 449-459. https://doi.org/10.1056/NEJMoa1709919
  67. Park, M. K. and Lee, C. H. (2019) Role of sphingosylphosphorylcholine in tumor and tumor microenvironment. Cancers (Basel) 11, E1696. https://doi.org/10.3390/cancers11111696
  68. Pasquier, E., Street, J., Pouchy, C., Carre, M., Gifford, A., Murray, J., Norris, M., Trahair, T., Andre, N. and Kavallaris, M. (2013) ${\beta}$-blockers increase response to chemotherapy via direct antitumour and anti-angiogenic mechanisms in neuroblastoma. Br. J. Cancer 108, 2485-2494. https://doi.org/10.1038/bjc.2013.205
  69. Pyonteck, S. M., Akkari, L., Schuhmacher, A. J., Bowman, R. L., Sevenich, L., Quail, D. F., Olson, O. C., Quick, M. L., Huse, J. T., Teijeiro, V., Setty, M., Leslie, C. S., Oei, Y., Pedraza, A., Zhang, J., Brennan, C. W., Sutton, J. C., Holland, E. C., Daniel, D. and Joyce, J. A. (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264-1272. https://doi.org/10.1038/nm.3337
  70. Quail, D. F., Bowman, R. L., Akkari, L., Quick, M. L., Schuhmacher, A. J., Huse, J. T., Holland, E. C., Sutton, J. C. and Joyce, J. A. (2016) The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352, aad3018. https://doi.org/10.1126/science.aad3018
  71. Quail, D. F. and Joyce, J. A. (2013) Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423-1437. https://doi.org/10.1038/nm.3394
  72. Ribas, A., Hamid, O., Daud, A., Hodi, F. S., Wolchok, J. D., Kefford, R., Joshua, A. M., Patnaik, A., Hwu, W.-J., Weber, J. S., Gangadhar, T. C., Hersey, P., Dronca, R., Joseph, R. W., Zarour, H., Chmielowski, B., Lawrence, D. P., Algazi, A., Rizvi, N. A., Hoffner, B., Mateus, C., Gergich, K., Lindia, J. A., Giannotti, M., Li, X. N., Ebbinghaus, S., Kang, S. P. and Robert, C. (2016) Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA 315, 1600-1609. https://doi.org/10.1001/jama.2016.4059
  73. Robert, C., Long, G. V., Brady, B., Dutriaux, C., Maio, M., Mortier, L., Hassel, J. C., Rutkowski, P., McNeil, C., Kalinka-Warzocha, E., Savage, K. J., Hernberg, M. M., Lebbe, C., Charles, J., Mihalcioiu, C., Chiarion-Sileni, V., Mauch, C., Cognetti, F., Arance, A., Schmidt, H., Schadendorf, D., Gogas, H., Lundgren-Eriksson, L., Horak, C., Sharkey, B., Waxman, I. M., Atkinson, V. and Ascierto, P. A. (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 372, 320-330. https://doi.org/10.1056/NEJMoa1412082
  74. Roma-Rodrigues, C., Mendes, R., Baptista, P. V. and Fernandes, A. R. (2019) Targeting tumor microenvironment for cancer therapy. Int. J. Mol. Sci. 20, E840. https://doi.org/10.3390/ijms20040840
  75. Routy, B., Le Chatelier, E., Derosa, L., Duong, C. P., Alou, M. T., Daillere, R., Fluckiger, A., Messaoudene, M., Rauber, C., Roberti, M. P., Fidelle, M., Flament, C., Poirier-Colame, V., Opolon, P., Klein, C., Iribarren, K., Mondragon, L., Jacquelot, N., Qu, B., Ferrere, G., Clemenson, C., Mezquita, L., Masip, J. R., Naltet, C., Brosseau, S., Kaderbhai, C., Richard, C., Rizvi, H., Levenez, F., Galleron, N., Quinquis, B., Pons, N., Ryffel, B., Minard-Colin, V., Gonin, P., Soria, J. C., Deutsch, E., Loriot, Y., Ghiringhelli, F., Zalcman, G., Goldwasser, F., Escudier, B., Hellmann, M. D., Eggermont, A., Raoult, D., Albiges, L., Kroemer, G. and Zitvogel, L. (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91-97. https://doi.org/10.1126/science.aan3706
  76. Ryu, D., Ryoo, I. G. and Kwak, M. K. (2018) Overexpression of CD44 standard isoform upregulates HIF-$1{\alpha}$ signaling in hypoxic breast cancer cells. Biomol. Ther. (Seoul) 26, 487-493. https://doi.org/10.4062/biomolther.2018.116
  77. Saada-Bouzid, E., Defaucheux, C., Karabajakian, A., Coloma, V. P., Servois, V., Paoletti, X., Even, C., Fayette, J., Guigay, J., Loirat, D., Peyrade, F., Alt, M., Gal, J. and Le Tourneau, C. (2017) Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann. Oncol. 28, 1605-1611. https://doi.org/10.1093/annonc/mdx178
  78. Sambi, M., Bagheri, L. and Szewczuk, M. R. (2019) Current challenges in cancer immunotherapy: multimodal approaches to improve efficacy and patient response rates. J. Oncol. 2019, 4508794. https://doi.org/10.1155/2019/4508794
  79. Schadendorf, D., Hodi, F. S., Robert, C., Weber, J. S., Margolin, K., Hamid, O., Patt, D., Chen, T.-T., Berman, D. M. and Wolchok, J. D. (2015) Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J. Clin. Oncol. 33, 1889-1894. https://doi.org/10.1200/JCO.2014.56.2736
  80. Semenza, G. L. (2003) Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721-732. https://doi.org/10.1038/nrc1187
  81. Sengupta, N., MacFie, T. S., MacDonald, T. T., Pennington, D. and Silver, A. R. (2010) Cancer immunoediting and "spontaneous" tumor regression. Pathol. Res. Pract. 206, 1-8. https://doi.org/10.1016/j.prp.2009.10.001
  82. Serhan, C. N. and Savill, J. (2005) Resolution of inflammation: the beginning programs the end. Nat. Immunol. 6, 1191-1197. https://doi.org/10.1038/ni1276
  83. Seymour, L., Bogaerts, J., Perrone, A., Ford, R., Schwartz, L. H., Mandrekar, S., Lin, N. U., Litiere, S., Dancey, J., Chen, A., Hodi, F. S., Therasse, P., Hoekstra, O. S., Shankar, L. K., Wolchok, J. D., Ballinger, M., Caramella, C. and de Vries, E. G. E.; RECIST working group (2017) iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 18, e143-e152. https://doi.org/10.1016/S1470-2045(17)30074-8
  84. Sharma, P. and Allison, J. P. (2015) Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161, 205-214. https://doi.org/10.1016/j.cell.2015.03.030
  85. Shen, H., Sun, T., Hoang, H. H., Burchfield, J. S., Hamilton, G. F., Mittendorf, E. A. and Ferrari, M. (2017) Enhancing cancer immunotherapy through nanotechnology-mediated tumor infiltration and activation of immune cells. In Seminars in Immunology, Vol. 34, pp. 114-122. Elsevier. https://doi.org/10.1016/j.smim.2017.09.002
  86. Sivan, A., Corrales, L., Hubert, N., Williams, J. B., Aquino-Michaels, K., Earley, Z. M., Benyamin, F. W., Lei, Y. M., Jabri, B., Alegre, M.-L., Chang, E. B. and Gajewski, T. F. (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084-1089. https://doi.org/10.1126/science.aac4255
  87. Spranger, S., Bao, R. and Gajewski, T. F. (2015) Melanoma-intrinsic ${\beta}$-catenin signalling prevents anti-tumour immunity. Nature 523, 231-235. https://doi.org/10.1038/nature14404
  88. Tabebi, M., Soderkvist, P. and Jensen, L. D. (2018) Hypoxia Signaling and Circadian Disruption in and by Pheochromocytoma. Front. Endocrinol. (Lausanne) 9, 612. https://doi.org/10.3389/fendo.2018.00612
  89. Tartari, F., Santoni, M., Burattini, L., Mazzanti, P., Onofri, A. and Berardi, R. (2016) Economic sustainability of anti-PD-1 agents nivolumab and pembrolizumab in cancer patients: recent insights and future challenges. Cancer Treat. Rev. 48, 20-24. https://doi.org/10.1016/j.ctrv.2016.06.002
  90. Tazdait, M., Mezquita, L., Lahmar, J., Ferrara, R., Bidault, F., Ammari, S., Balleyguier, C., Planchard, D., Gazzah, A., Soria, J. C., Marabelle, A., Besse, B. and Caramella, C. (2018) Patterns of responses in metastatic NSCLC during PD-1 or PDL-1 inhibitor therapy: Comparison of RECIST 1.1, irRECIST and iRECIST criteria. Eur. J. Cancer 88, 38-47. https://doi.org/10.1016/j.ejca.2017.10.017
  91. Terry, S., Buart, S. and Chouaib, S. (2017) Hypoxic stress-induced tumor and immune plasticity, suppression, and impact on tumor heterogeneity. Front. Immunol. 8, 1625. https://doi.org/10.3389/fimmu.2017.01625
  92. Turner, K. A. (2014) Radical Remission : Surviving Cancer against All Odds. HarperOne, New York, NY.
  93. Ventola, C. L. (2017a) Cancer immunotherapy, part 1: current strategies and agents. P T 42, 375-383.
  94. Ventola, C. L. (2017b) Cancer immunotherapy, part 2: efficacy, safety, and other clinical considerations. P T 42, 452-463.
  95. Ventola, C. L. (2017c) Cancer immunotherapy, part 3: challenges and future trends. P T 42, 514-521.
  96. Vergnenegre, A. and Chouaid, C. (2018) Review of economic analyses of treatment for non-small-cell lung cancer (NSCLC). Expert Rev. Pharmacoecon. Outcomes Res. 18, 519-528. https://doi.org/10.1080/14737167.2018.1485099
  97. Verlande, A. and Masri, S. (2019) Circadian clocks and cancer: time-keeping governs cellular metabolism. Trends Endocrinol. Metab. 30, 445-458. https://doi.org/10.1016/j.tem.2019.05.001
  98. Verma, V., Sprave, T., Haque, W., Simone, C. B., 2nd, Chang, J. Y., Welsh, J. W. and Thomas, C. R., Jr. (2018) A systematic review of the cost and cost-effectiveness studies of immune checkpoint inhibitors. J. Immunother. Cancer 6, 128. https://doi.org/10.1186/s40425-018-0442-7
  99. Vijayalaxmi, Thomas, C. R., Jr., Reiter, R. J. and Herman, T. S. (2002) Melatonin: from basic research to cancer treatment clinics. J. Clin. Oncol. 20, 2575-2601. https://doi.org/10.1200/JCO.2002.11.004
  100. Vitale, I., Manic, G., Coussens, L. M., Kroemer, G. and Galluzzi, L. (2019) Macrophages and Metabolism in the Tumor Microenvironment. Cell Metab. 30, 36-50. https://doi.org/10.1016/j.cmet.2019.06.001
  101. Warfel, N. A. and El-Deiry, W. S. (2014) HIF-1 signaling in drug resistance to chemotherapy. Curr. Med. Chem. 21, 3021-3028. https://doi.org/10.2174/0929867321666140414101056
  102. Wayteck, L., Breckpot, K., Demeester, J., De Smedt, S. C. and Raemdonck, K. (2014) A personalized view on cancer immunotherapy. Cancer Lett. 352, 113-125. https://doi.org/10.1016/j.canlet.2013.09.016
  103. Weber, J. S., D'Angelo, S. P., Minor, D., Hodi, F. S., Gutzmer, R., Neyns, B., Hoeller, C., Khushalani, N. I., Miller, W. H., Jr., Lao, C. D., Linette, G. P., Thomas, L., Lorigan, P., Grossmann, K. F., Hassel, J. C., Maio, M., Sznol, M., Ascierto, P. A., Mohr, P., Chmielowski, B., Bryce, A., Svane, I. M., Grob, J. J., Krackhardt, A. M., Horak, C., Lambert, A., Yang, A. S. and Larkin, J. (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 16, 375-384. https://doi.org/10.1016/S1470-2045(15)70076-8
  104. West, H. (2014) Nivolumab as first line monotherapy for advanced non-small cell lung cancer: could we replace first line chemotherapy with immunotherapy? Transl. Lung Cancer Res. 3, 400-402. https://doi.org/10.3978/j.issn.2218-6751.2014.09.04
  105. Wilhelm, S., Tavares, A. J., Dai, Q., Ohta, S., Audet, J., Dvorak, H. F. and Chan, W. C. W. (2016) Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014. https://doi.org/10.1038/natrevmats.2016.14
  106. Wolchok, J. D., Hoos, A., O'Day, S., Weber, J. S., Hamid, O., Lebbe, C., Maio, M., Binder, M., Bohnsack, O., Nichol, G., Humphrey, R. and Hodi, F. S. (2009) Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res. 15, 7412-7420. https://doi.org/10.1158/1078-0432.CCR-09-1624
  107. Xia, A. L., Xu, Y. and Lu, X. J. (2019) Cancer immunotherapy: challenges and clinical applications. J. Med. Genet. 56, 1-3. https://doi.org/10.1136/jmedgenet-2018-105852
  108. Xia, Y. and Lee, K. (2010) Targeting multidrug resistance with small molecules for cancer therapy. Biomol. Ther. (Seoul) 18, 375-385. https://doi.org/10.4062/biomolther.2010.18.4.375
  109. Yang, Y. (2015) Cancer immunotherapy: harnessing the immune system to battle cancer. J. Clin. Invest. 125, 3335-3337. https://doi.org/10.1172/JCI83871
  110. Zahl, P. H., Maehlen, J. and Welch, H. G. (2008) The natural history of invasive breast cancers detected by screening mammography. Arch. Intern. Med. 168, 2311-2316. https://doi.org/10.1001/archinte.168.21.2311
  111. Zaretsky, J. M., Garcia-Diaz, A., Shin, D. S., Escuin-Ordinas, H., Hugo, W., Hu-Lieskovan, S., Torrejon, D. Y., Abril-Rodriguez, G., Sandoval, S., Barthly, L., Saco, J., Homet Moreno, B., Mezzadra, R., Chmielowski, B., Ruchalski, K., Shintaku, I. P., Sanchez, P. J., Puig-Saus, C., Cherry, G., Seja, E., Kong, X., Pang, J., Berent-Maoz, B., Comin-Anduix, B., Graeber, T. G., Tumeh, P. C., Schumacher, T. N., Lo, R. S. and Ribas, A. (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819-829. https://doi.org/10.1056/NEJMoa1604958
  112. Zingg, D., Arenas-Ramirez, N., Sahin, D., Rosalia, R. A., Antunes, A. T., Haeusel, J., Sommer, L. and Boyman, O. (2017) The histone methyltransferase Ezh2 controls mechanisms of adaptive resistance to tumor immunotherapy. Cell Rep. 20, 854-867. https://doi.org/10.1016/j.celrep.2017.07.007
  113. Zuazo-Ibarra, M., Arasanz, H., Fernandez-Hinojal, G., Gato-Canas, M., Hernandez-Marin, B., Martinez-Aguillo, M., Lecumberri, M. J., Fernandez, A., Teijeira, L., Vera, R., Kochan, G. and Escors, D. (2018) Highly differentiated CD4 T cells unequivocally identify primary resistance and risk of hyperprogression to PD-L1/PD-1 immune checkpoint blockade in lung cancer. bioRxivorg doi:10.1101/320176.
  114. Zugazagoitia, J., Guedes, C., Ponce, S., Ferrer, I., Molina-Pinelo, S. and Paz-Ares, L. (2016) Current challenges in cancer treatment. Clin. Ther. 38, 1551-1566. https://doi.org/10.1016/j.clinthera.2016.03.026

Cited by

  1. Roles of Farnesyl-Diphosphate Farnesyltransferase 1 in Tumour and Tumour Microenvironments vol.9, pp.11, 2020, https://doi.org/10.3390/cells9112352
  2. The Role of CDK5 in Tumours and Tumour Microenvironments vol.13, pp.1, 2021, https://doi.org/10.3390/cancers13010101
  3. Pathophysiological Roles of Histamine Receptors in Cancer Progression: Implications and Perspectives as Potential Molecular Targets vol.11, pp.8, 2020, https://doi.org/10.3390/biom11081232