• Title/Summary/Keyword: Cancer Cell Lines

Search Result 1,739, Processing Time 0.028 seconds

Comparative Proteomic Profiling of Pancreatic Ductal Adenocarcinoma Cell Lines

  • Kim, Yikwon;Han, Dohyun;Min, Hophil;Jin, Jonghwa;Yi, Eugene C.;Kim, Youngsoo
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.888-898
    • /
    • 2014
  • Pancreatic cancer is one of the most fatal cancers and is associated with limited diagnostic and therapeutic modalities. Currently, gemcitabine is the only effective drug and represents the preferred first-line treatment for chemotherapy. However, a high level of intrinsic or acquired resistance of pancreatic cancer to gemcitabine can contribute to the failure of gemcitabine treatment. To investigate the underlying molecular mechanisms for gemcitabine resistance in pancreatic cancer, we performed label-free quantification of protein expression in intrinsic gemcitabine-resistant and -sensitive human pancreatic adenocarcinoma cell lines using our improved proteomic strategy, combined with filter-aided sample preparation, single-shot liquid chromatography-mass spectrometry, enhanced spectral counting, and a statistical method based on a power law global error model. We identified 1931 proteins and quantified 787 differentially expressed proteins in the BxPC3, PANC-1, and HPDE cell lines. Bioinformatics analysis identified 15 epithelial to mesenchymal transition (EMT) markers and 13 EMT-related proteins that were closely associated with drug resistance were differentially expressed. Interestingly, 8 of these proteins were involved in glutathione and cysteine/methionine metabolism. These results suggest that proteins related to the EMT and glutathione metabolism play important roles in the development of intrinsic gemcitabine resistance by pancreatic cancer cell lines.

The Antitumor Effect of C-terminus of Hsp70-Interacting Protein via Degradation of c-Met in Small Cell Lung Cancer

  • Cho, Sung Ho;Kim, Jong In;Kim, Hyun Su;Park, Sung Dal;Jang, Kang Won
    • Journal of Chest Surgery
    • /
    • v.50 no.3
    • /
    • pp.153-162
    • /
    • 2017
  • Background: The mesenchymal-epithelial transition factor (MET) receptor can be overexpressed in solid tumors, including small cell lung cancer (SCLC). However, the molecular mechanism regulating MET stability and turnover in SCLC remains undefined. One potential mechanism of MET regulation involves the C-terminus of Hsp70-interacting protein (CHIP), which targets heat shock protein 90-interacting proteins for ubiquitination and proteasomal degradation. In the present study, we investigated the functional effects of CHIP expression on MET regulation and the control of SCLC cell apoptosis and invasion. Methods: To evaluate the expression of CHIP and c-Met, which is a protein that in humans is encoded by the MET gene (the MET proto-oncogene), we examined the expression pattern of c-Met and CHIP in SCLC cell lines by western blotting. To investigate whether CHIP overexpression reduced cell proliferation and invasive activity in SCLC cell lines, we transfected cells with CHIP and performed a cell viability assay and cellular apoptosis assays. Results: We found an inverse relationship between the expression of CHIP and MET in SCLC cell lines (n=5). CHIP destabilized the endogenous MET receptor in SCLC cell lines, indicating an essential role for CHIP in the regulation of MET degradation. In addition, CHIP inhibited MET-dependent pathways, and invasion, cell growth, and apoptosis were reduced by CHIP overexpression in SCLC cell lines. Conclusion: C HIP is capable of regulating SCLC cell apoptosis and invasion by inhibiting MET-mediated cytoskeletal and cell survival pathways in NCI-H69 cells. CHIP suppresses MET-dependent signaling, and regulates MET-mediated SCLC motility.

Water Extracts of Cultured Mountain Ginseng Stimulate Immune Cells and Inhibit Cancer Cell Proliferation

  • Oh, Chan-Ho;Kang, Pil-Sung;Kim, Jae-Whune;Kwon, Jin;Oh, Suk-Heung
    • Food Science and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.369-373
    • /
    • 2006
  • Water extracts obtained from cultured mountain ginseng (CMG) were evaluated for their ability to stimulate immune cells and inhibit cancer cell proliferation. The lymphocyte subpopulation in mouse splenocytes in vivo was significantly increased by the administration of the CMG extract (27.4 mg/mouse). Interleukin-2 and ${\gamma}$-interferon in the mice serum increased up to 30% in CMG extract-treated mice. At a concentration of 1.37 mg/mL, nitric oxide increased up to 400% in the macrophage cell line treated with CMG extract. The CMG extract significantly retarded the proliferation of human acute promyelocytic (HL60), human histiocytic (U937), and mouse lymphocytic (L1210) leukemia cell lines in vitro at concentrations over 2.74-13.7 mg/mL. In addition, CMG extract treatments (1.37 mg/mL and 2.74 mg/mL) lead to the increased expression of the p53 gene and protein in cultured U937 leukemia cell lines. These results indicate that water extracts of CMG are capable of both immune cell stimulation and cancer cell growth inhibition.

A Novel Monoclonal Antibody Induces Cancer Cell Apoptosis and Enhances the Activity of Chemotherapeutic Drugs

  • Xu, Heng;Tian, Yan-Na;Dun, Bo-Ying;Liu, Hai-Tao;Dong, Guang-Kuo;Wang, Jin-Hua;Lu, Shang-Su;Chen, Bo;She, Jin-Xiong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4423-4428
    • /
    • 2014
  • A novel monoclonal antibody (mAb), known as AC10364, was identified from an antibody library generated by immunization of mice with human carcinoma cells. The mAb recognized proteins in lysates from multiple carcinoma cell lines. Cell cytotoxicity assays showed that AC10364 significantly inhibited cell growth and induced apoptosis in multiple carcinoma cell lines, including Bel/fu, KATO-III and A2780. Compared with mAb AC10364 or chemotherapeutic drugs alone, the combination of mAb AC10364 with chemotherapeutic drugs demonstrated enhanced growth inhibitory effects on carcinoma cells. These results suggest that mAb AC10364 is a promising candidate for cancer therapy.

Effects of Punica granatum L. Fractions on Quinone Reductase Induction and Growth Inhibition on Serveral Cancer Cells (석류 추출성분이 암세포 증식 억제와 Quinone Reductase 유도활성에 미치는 효과)

  • 심선미;최상원;배송자
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.1
    • /
    • pp.80-85
    • /
    • 2001
  • Various lines of evidence suggest that dietary components protect the initiation step of carcinogenesis. In this study, the ethylacetate (PGMEA), ethylether (PGMEE), butanol (PGMB) and aqueous (PGMA) soluble fractions of Punica granatum L. (PG) were screened for their growth inhibition using the MTT assay on HepG2, HeLa, C6, MCF-7 and HT-29 cells and for their activity to induce quinone reductase (QR) in HepG2 cells. Among various fractions of Punica granatum L., the PGMEE showed the strongest growth inhibition at 500 $\mu\textrm{g}$/mL which resulted 92.5% on Hela cell lines and 97.8% on C6 cell lines. The PGMEA and PGMB also showed significant growth inhibition. The assay of QR induction on HepG2 cells, grown in the presence of PGMEE at the concentration of 50$\mu\textrm{g}$/mL, was 1.4 times more effective compared with the control value of1.0. These results suggested that useful cancer chemoprevention materials could be isolated from PGMEE fraction of Punica granatum L.

  • PDF

Synthesis of 2-Thio-4-aminopyrimidine Derivatives as Anti-cancer Agent

  • Lee, Sang-Hyo;Lee, Jin-Ho
    • Biomedical Science Letters
    • /
    • v.15 no.2
    • /
    • pp.105-112
    • /
    • 2009
  • The screening of the anti-cancer activity of the chemical library provided 2-thio-4-aminopyrimidine as the initial hit. The confirmation of structure and biological effect of hit was performed by synthesis and biological evaluation. The optimization of hit was performed by derivatization of substituents while keeping the core structure. The evaluation of growth inhibitory activity was carried out using SRB assay against 6 human cancer cell lines and human fibroblast. The growth inhibitory activity of compounds showed substituent dependency and more than 5 compounds showed complete growth inhibition of cancer cell lines at 10 ${\mu}M$ concentration. Chemical library screening followed by synthetic modification provided possibility that 2-thio-4-aminopyrimidine can be used as a new scaffold for the development of anti-cancer agent.

  • PDF

Lycorine induces apoptosis by enhancing protein degradation of survivin in human oral cancer cell lines (Lycorine의 사람 구강 암 세포주에서 survivin 단백질 분해 증진으로 세포자멸사 유도)

  • Jeong, Joseph H.;Cho, Nam-Pyo;Jang, Boonsil
    • The Korean Journal of Oral and Maxillofacial Pathology
    • /
    • v.41 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Lycorine, a natural alkaloid extracted from the Amaryllidaceae plant family, was reported to various physiological and pharmacological effects including anti-cancer activity. Nevertheless, there is no report of the anticancer effect of lycorine in oral cancer cells. The effects of lycorine on cell proliferation and apoptosis were examined through trypan blue exclusion assay, 4'-6-diamidino-2-phenylindole (DAPI) stain, Live/Dead assay, Western blot analysis and RT-PCR. Lycorine suppressed cell viability and induced apoptosis in MC3 and HSC-3 cell lines. Lycorine decreased survivin protein but did not affect its mRNA. It regulated survivin through accelerating protein degradation in a time-dependent manner although neither proteasome nor lysosome was not associated with lycorine-mediated protein degradation. Collectively, our results suggest that lycorine may be a potential therapeutic anti-cancer drug candidate for the treatment of human oral cancer.

Cannabidiol Induces Cytotoxicity and Cell Death via Apoptotic Pathway in Cancer Cell Lines

  • ChoiPark, Won-HyungHyun-Do;Baek, Seung-Hwa;Chu, Jong-Phil;Kang, Mae-Hwa;Mi, Yu-Jing
    • Biomolecules & Therapeutics
    • /
    • v.16 no.2
    • /
    • pp.87-94
    • /
    • 2008
  • In view of obtaining potential anticancer compounds, we studied the inhibitory activity and the cytotoxic effects of a candidate compound in cancer cells. The cytotoxic effects of cannabidiol (CBD) in vitro were evaluated in NIH3T3 fibroblasts, B16 melanoma cells, A549 lung cancer cells, MDA-MB-231 breast cancer cells, Lenca kidney cells and SNU-C4 colon cancer cells. The cells were cultured in various concentrations of CBD for 48 h and 25 ${\mu}$M of CBD for 6-36 h. The cells were observed to exhibit inhibitory effects of the cell viability in their growth, and then cytotoxicity was estimated. The inhibitory activity of CBD was increased in all cancer cells and showed especially strong increment in breast cancer cells. The cytotoxicity of CBD increased in a dose- and time-dependent manner with growth inhibition in all cancer cell lines. Also, to assess the membrane toxicity induced by CBD, we investigated lactate dehydrogenase (LDH) release. After treatment with various concentrations of CBD, LDH release rate of cancer cells was accelerated. On the other hand, in the induction of cell death, caspase-3, -8 and -9 activations were detected in cancer cells after treatment with various concentrations of CBD, and CBD effectively induced activity of caspase-3, -8 and -9 in A549 lung cancer cells, MDAMB-231 breast cancer cells and Renca kidney cells. Therefore these results suggest that CBD has a possibility of anticancer agents and anticancer effects against cancer cells by modulation of apoptotic pathway in the range of 5-80 ${\mu}$M concentration.

An Aqueous Extract of a Bifidobacterium Species Induces Apoptosis and Inhibits Invasiveness of Non-Small Cell Lung Cancer Cells

  • Ahn, Joungjwa;Kim, Hyesung;Yang, Kyung Mi
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.885-892
    • /
    • 2020
  • Chemotherapy regimens for non-small cell lung cancer (NSCLC) have various adverse effects on the human body. For this reason, probiotics have received attention regarding their potential value as a safe and natural complementary strategy for cancer prevention. This study analyzed the anticancer effects of aqueous extracts of probiotic bacteria Bifidobacterium bifidum (BB), Bifidobacterium longum (BL), Bifidobacterium lactis (BLA), Bifidobacterium infantis 1 (BI1), and Bifidobacterium infantis 2 (BI2) on NSCLC cell lines. When the aqueous extracts of probiotic Bifidobacterium species were applied to the NSCLC cell lines A549, H1299, and HCC827, cell death increased considerably; in particular, the aqueous extracts from BB and BLA markedly reduced cell proliferation. p38 phosphorylation induced by BB aqueous extract increased the expression of cleaved caspase 3 and cleaved poly (ADP-ribose) polymerase (PARP), consequently inducing the apoptosis of A549 and H1299 cells. When the p38 inhibitor SB203580 was applied, phosphorylation of p38 decreased, and the expression of cleaved caspase 3 and cleaved PARP was also inhibited, resulting in a reduction of cell death. In addition, BB aqueous extracts reduced the secretion of MMP-9, leading to inhibition of cancer cell invasion. By contrast, after transfection of short hairpin RNA shMMP-9 (for a knockdown of MMP-9) into cancer cells, BB aqueous extracts treatment failed to suppress the cancer cell invasiveness. According to our results about their anticancer effects on NSCLC, probiotics consisting of Bifidobacterium species may be useful as adjunctive anticancer treatment in the future.